

The following are trademarks or registered trademarks of their respective companies:

Microsoft-Windows, Windows of Microsoft Inc. Compact flash of San Disk Corporation FWD-Light of Tokyo Sokki Kenkyujo Co, Ltd.

Product	Compact	Standard	standard accesory
	\bullet	\bullet	Weight (5kg): $\mathrm{KFDF-111-05}$ Looding : KFDF- $(\$ 100 \times \mathrm{t15mm})$ 5 m cable
Indicator: TC-351F - Display - RS-232C interface - Memory card slot	\bullet	\bullet	AC power pack: CR-1870 Battery
Aluminium case for carrying and storing : KFDF-21 \qquad	-	\bullet	Stores main body, exlusive indicator and options (external displacement sensor and exclusive printer)
32 3-byte compact flash	-	\bullet	
Memory card adaptor	-	-	
Data acquistion software for TC-351F: TC-7351	\bullet	-	Requires optional RS-232C cable of CR-5360

Specifications subject to change without prior notice.

Devinem manion ed tia

Tokyo Sokki Kenkyujo Co., Ltd. www.tml.jp/e
8-2, Minami-Ohi 6-Chome, Shinagawa-Ku, TOKYO140-8560, JAPAN TEL: Tokyo 03-3763-5611 FAX: Tokyo 03-3763-5713
e-mail address: sales@tml.jp

Tokyo Sokki Kenkyujo Co., Ltd.

TML Small FWD System FWD-Light ${ }^{\text {® }}$

OUTLINE OF SYSTEM

FWD (Falling Weight Deflectometer) is used for estimating construction of pavement or rigidity of subgrade. Also, plate loading test is used for estimating characteristics of subgrade. However, these methods require much time and works for their preparation, data acquisition and analysis. TML small FWD System "FWDLight ${ }^{\circledR}$ " features excellent portability and enables simple and quick measurement of coefficient of subgrade reaction which is called \mathbf{K} value and modulus of subgrade elasiticity which is called \mathbf{E} value. FWD-Light consists of main body KFD-100A and indicator TC-351F. The main body includes load cell and acceleration transducer whose measuring ranges are 20 kN of load and 2.5 mm of displacement at maximum. Values of maximum load and displacement, and analysis results of K value and E value are indicated on the indicator. Each analysis result can be stored in memory card and printed by exclusive printer. Data stored in memory card can be transferred to a personal computer by directly connecting the card or via the indicator. Measurement and processing software TC-7100 is available as an optional item for indicating waveforms of load acceleration, velocity and displacement, O-P time and time product using personal computer.

- Example of waveiorm indication using oplional Measurement/Analysis Soitware Tc-7100

- : Load P0
- : Displacement Do
- : External displace-- ment D1 External displacement D2
K-TML : Coefficient of subgrade reaction E-TML : Modulus of subgrade elasticity
O-P time: Time between rising and peak of Integration Naverorm
Integration: Areal dimensions of O-P time

OUTLINE OF OPERATION

In this system, weight of main body of Small FwD is made to fall freely, and shock load and displacement by the falling are measured by load cell and acceleration transducer. Displacement is obtained by integrating the acceleration twice. Measurement of external displacement of two points at maximum is available by combining external displacement sensor KFDS-1A. TML's original process (patent pending) is employed for integraing acceleration data to obtain displacement with high accuracy and good stability. Outputs of load cell and acceleration transducer are digitized by internal A / D converter of Small FWD main body and transmitted to indicator utilizing тмL's original 2 -wire network technique (patent pending). The indicator indicates results of analyses and also saves them into memory card. measurement/Analysis software (TC-7100) is required for measurement system with personal computer. In this system, data indicated on the indicator are transferred to the computer through the indicator without modification. Personal computer displays waveforms of load and displacement and also processes each analysis.

Small FWD mai	body KFD-100A
Dimensions of loading plate	¢ 100×15 (thick) mm
Mass of weight	5 kg
Falling height	50~550 mm
Falling method of weight	Lever (with stopper)
Maximum load	20000 N
Maximum displacement	2.500 mm
Strain gauge based sensor	
Load cell	1 point, 20000N
Acceleration transducer	1 point, $500 \mathrm{~m} / \mathrm{s}^{2}$
Data acquisition	
No. of measuring points	2 points (load and acceleration)
Measuring accuracy	$\pm\left(0.1 \% \mathrm{rdo}+2\right.$ dioit) (at $\left.23 \pm 5^{\circ} \mathrm{C}\right)$
Data memory	800 data/point
Sampling speed	$50 \mu \mathrm{sec}$
Trigger function	By data (load value)
Inertace	Exclusive 2 -wire serial transter
No. of external displacement sensor	2 points at maximum
Power source	Supplied by TC-351F
Environment	$-20 \sim+60^{\circ} \mathrm{C}$, less than $85 \% \mathrm{RH}$ (no condensation)
Height	Approx. 1100 mm
Weight	Approx. 15 kg (including 5 kg weight)

$$
\mathrm{K}_{\mathrm{TM}}=\frac{\mathrm{P}}{\pi \mathrm{r}^{2} \mathrm{D}} \times \frac{\mathrm{R}}{\mathrm{R}_{300}} \times 10^{3}
$$

K_{Ta}. Coefficient of sugrade reaction obtained by TML
. . mall FWD System (MN/m')
P : Load (N)
D : Displacement (mm)
r
r
: Radius of loading plat
$\begin{array}{l:l}\mathrm{r} & \text { : Radius of loading plate }(\mathrm{mm}) \\ \mathbf{R} & \text { : Diameter of loading plate } \mathrm{R}=2 \mathrm{r}(\mathrm{mm})\end{array}$
\mathbf{R}_{300} : Diameter of standard loading plate ($\phi 300 \mathrm{~mm}$)
-Calculation of Modulus of subgrade elasticity

$$
\mathrm{E}_{\mathrm{TML}}=\frac{2\left(1-\nu^{2}\right) \mathrm{P}}{\pi \mathrm{rD}}
$$

$\mathbf{E}_{\mathrm{TML}}$: Modulus of sugrade elasticity obtained by TML Small FWD System (MN/m')
: Load (N)
D : Displacement (mm)
r : Radius of loading plate (mm)
ν : Poisson's ratio (0.30 , available to change)

■optional External Displacement Sensor KFDS-1A Maximum displacement $\quad 1.000 \mathrm{~mm}$ (sensor is an acceleration transducer) Dimensions $\quad \phi 90 \times 129(\mathrm{H}) \mathrm{mm}$

