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Abstract

For a positively expansive continuous map or an expansive homeomorphism of a compact metric
space satisfying the strong almost product property, we prove a level-2 large deviation principle for
the distribution of periodic points. This is a generalization of the result shown by Kifer.
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1 Introduction

This paper is devoted to the study of level-2 large deviation principles for dynamical systems. Let
(X, d) be a compact metric space and f be a continuous map from X to itself. We denote by M(X) the
set of all Borel probability measures on X with the weak topology. We say that a sequence {Q,} of Borel
probability measures on M (X) is said to satisfy a level-2 large deviation principle with a rate function
q: M(X) — [—00,0] if ¢ is upper semicontinuous,

1
liminf — log Q,(G) > sup q(p)
n—oo n nea

holds for any open set G C M(X) and

1
lim sup - log ©2,(F) < sup (1)
n—oo N ner

holds for any closed set ' C M(X). Usually, §2,, is taken as the distribution of periodic points, iterated
preimages, or Birkhoff averages. See [4] for the precise definitions of them.

Large deviation problems for dynamical systems have been extensively studied by several authors such
as [3, 4, 5, 6](the case of periodic-points), [4](the case of iterated-preimages) and [2, 4, 5, 11](the case
of Birkhoff averages), but mainly under the condition that the dynamical system has the specification
property. The specification property was introduced by Bowen [1] and holds for typical chaotic dynamical
systems including transitive Anosov diffeomorphisms and topologically mixing subshifts of finite type.
However, there are many dynamics without the specification, such as S-shifts, ergodic automorphisms
and generic non-hyperbolic dynamical systems. Recently, Pfister and Sullivan proved that all g-shifts
satisfy the level-2 large deviation principle in the special case of Birkhoff averages.

The aim of this paper is to investigate the large deviation principle for $-shifts in the case of periodic
points. For a continuous function ¢ on X, we define a sequence {2¥} of Borel probability measures on
M(X) as
exp(Snip(z))

Qf .=
ZzEPn(f) exp(Snep

IGPn(f)

EIRE

Here P,(f) = {z € X : f*(z) = z}, Spp(x) = Z;:Ol o(fi(x)), En(z) = %Z;:l dfi(z) and d, denotes
the Dirac mass at the point y € X. In this paper, we call {Q¥} the distribution of periodic points (for
©). Now we state our main theorem of this paper.
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Theorem 1.1. Let f: X — X be a positively expansive continuous map or an expansive homeomorphism
of a compact metric space (X, d). If f satisfies the strong almost product property, then for any continuous
function ¢, Q¢ satisfies a large deviation principle with a rate function ¢¥: M(X) — [—o0, 0] given by

e :{ hu(f) + [ odp— P(f,0) (1€ My(X));

—00 (otherwise).
Here h,(f) denotes the metric entropy of p € M;(X) and P(f, ) denotes the topological pressure of ¢.

We know that all S-shifts satisfy the assumption of Theorem 1.1 (see [7, Example]). Thus, all S-shifts
satisfy the level-2 large deviation principle in the case of periodic distributions.
In §2, we recall some background materials from ergodic theory, and give a proof of Theorem 1.1 in

§3.

2 Preliminaries

Let (X,d) be a compact metric space and f: X — X be a continuous map. We denote by M(X)
the set of all Borel probability measures on X with the weak topology and denote by M(X) the set
of all f-invariant Borel probability measures on X. Let C(X,R) be the Banach space of continuous
real-valued functions of X with the sup norm || - ||». Since C(X,R) is separable, there exists a countable
set {¢1, 2, -} which is dense in C(X,R). For pu,v € M(X), we define

x| [ endp — [ ondy|
D(u,v) ,:Z ST I
n=1

Then D is a compatible metric for M(X) and (M(X), D) is compact. It is easy to see that D(u,v) <1
for any pu,v € M(X). For up € M(X) and € > 0, we set B(u,¢) := {v € M(X) : D(p,v) < €}.

A continuous map f: X — X is said to satisfy the specification property if for any € > 0, there is
an integer M, such that for any £ > 1 and k points z1,--- ,z; € X and for any sequence of integers
0<a; <b <as <by < -+ <ag < by with a; —b;—1 > M, (2 < i < k), there is an x € X with
d(f* i (x), fi(x;)) < e (0<j<b;—a;,1 <i<k). If such a point  can be chosen as a periodic point,
then we say that f has the strong specification property. In [7], Pfister and Sullivan introduce a weaker
form of the specification property, called almost product property.

Definition 2.1. We say that f has the almost product property if there exist g: N — N with lim,, 9 —
0 and m: Rt — N such that for any £ > 1, any z1,--- ,Zk, any €, > 0,--- ,¢x > 0 and any n; >
m(er), -+ ,ng > m(eg), there exists © € X such that

80 < j <y — 1od(f/Hmttmion(z), f(z) > e} < g(ng)

holds for any 1 < ¢ < k. Here A denotes the cardinality of the set A. If such a point = can be chosen as
a periodic point (i.e. fM 7 (1) = ), then we say that f has the strong almost product property.

Example 2.1. Let 3 > 1 and F#(x) = F(z) = Bz. f:[0,1] = [0,1] is then defined by

0 (z =0);
fle)=4¢ 1 (z #0, f(z) € N);
F(z) mod 1 (otherwise).

We define a; as f~1({0})\{1} = {a1,--- ,ap} with a; < --- < a, and set
Iy :=[0,a1], I1 := (a1,az], - , I, :== (ap, 1].
Put A :={0,---,p} and consider the shift space (AZ+,0). We define (¢;) € AZ" as ¢; = j if and only if
fi(1) € I; and set
XP = {we A% o*(w) < (¢1), k > 0}
Then X7 is a shift invariant closed subset of the full shift. We call the restriction of ¢ into X”? the S-shift.

It is known that the specification property holds only for a set of 8 of Lebesgue measure 0 ([9]), but for
any 8 > 1, B-shift satisfies the strong almost product property (see [7, Example]).



We review some known results which play an important role to prove Theorem 1.1.

Theorem 2.2. ([6, Theorem 2.1]) Let f: X — X be a continuous map of a compact metric space (X, d).
If f satisfies the almost product property, then for any y € M;(X), any h < h,(f) and any neighborhood
G of p, there exists an ergodic measure v € G such that h,(f) > h.

We say that a continuous map f: X — X is positively expansive if there exists ¢ > 0 such that
d(f™(z), f*(y)) < ¢ (n > 0) implies = y. Similarly, a homeomorphism f: X — X is said to be
expansive if there exists ¢ > 0 such that d(f™(z), f"(y)) < ¢ (n € Z) implies x = y.

Theorem 2.3. ([10, Theorem 1.2]) Let f: X — X be a positively expansive continuous map or an
expansive homeomorphism of a compact metric space (X, d). If f satisfies the strong almost product
property, then for any ¢ € C(X,R),

o L Snp(x)
P(f.¢) = lim —log Y e
$eP’n(f)
holds.

Let € > 0,6 >0and n > 1. A subset E is called (d,n,€)-separated if for any two distinct points
z,y € E, _ _
Ho<j<n—1:d(f(z), [ (y)) > e} >dn

holds.

Proposition 2.4. ([6, Proposition 2.1]) Let u be ergodic and h < h,(f). Then there exist € > 0 and
d > 0 such that for any neighborhood F of p in M(X), there exists N € N so that for any n > N, there
exists a (0, n, €)-separated set I' C X,,  such that

ﬁl—\ Z enh7
where X, p:={zr € X : %Z?:_Ol di(z) € '}

Theorem 2.5. ([3, Theorem 6]) Let f: X — X be a positively expansive map or an expansive homeo-
morphism of a compact metric space (X, d). Then for any ¢ € C'(X,R) and any closed set F' C M;(X),

we have )
lim sup — log Z e“n?(®) < gup (hu(f) +/g0du) )
n—oo JUEP”(f)ﬂXn,F peF

3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1.

Proposition 3.1. Let f: X — X be a continuous map of a compact metric space (X, d) and ¢ € C(X,R).
Suppose that f satisfies the strong almost product property. Then for any ergodic measure p and any
open neighborhood G of p, we have

1
liminf ~log Y €50 > n,(f) + / pdj.

n—oo N
z€EP, (f)NXn, G

Proof. Given any n > 0, choose a sufficiently small v > 0 such that B(y, 3v) C G and for any v € B(u, 3v)

‘/@du/wdu

holds. It follows from Proposition 2.4 that there exist € > 0, § > 0 and N € N such that for any n > N,
there exists a (6, n, €)-separated set I' C X, g(,,,3+) with fI" > e hu(f)=m),

Since X is compact, we can find ¢ > 0 with { < § such that D(d.,d,) < v and |p(z) — o(y)| <
whenever d(z,y) < (. Let m: Rt — N and g: N — N be as in Definition 2.1. Choose an integer n > 0 so

=7




large that n > max{N,m({)} and g(n) < nn hold. Then by the strong almost product property, for any
z € T, there exists a point o(z) € P,(f) such that

A < g(n),
where A, := {0 <j <n—1:d(f/(2), f(c(2))) > ¢}. Then for any z € I', we have
D(p,€n(0(2))) < D(p,En(2)) + D(En(2),En(0(2)))

1 1

< L2 DOpedpee) Ty X DOpeSpeen)
JEA. 7€{0,- ,n—1}\A,

S M + 2,7
n

< 3.

This implies 0(Z) € X, . Since I' is (d,n, €)-separated, the map o: I' — P,(f) N X,, ¢ is injective.
Moreover by the choice of (,

Sup(o(2) = Y e(fi(a(2)) + > p(f(0(2))

JEA, F€{0,-- ,n—1}\A,

> > o(f(2) = 29(n) | @llee + > o(f7(z)) —mm
jEA. 50, m—1}\A,

> Spp(z) —2nn

holds for any z € I'. Therefore we have

Z eSnga(ar) > Zesnsﬂ(g(z))

2€Pn ()NXn. z€D
> Z Snep(z)=2nm

zel
> Z en(f pdu—3n)

zel

ﬁfe”(f pdp—3mn)
e hu(H)+[ pdp—an)

v

which proves the proposition. O

Now we give a proof of Theorem 1.1. The upper estimate
1
lim sup — log Q¥ (F) < sup ¢*(u) (F C M(X) : closed)
n—oo T ner

is a directly consequence of Theorems 2.3 and 2.5.
Let G C M(X) be an open subset and u € G. In what follows we will show that

lim inf 1 log Q2 (G) > ¢¥ (). (3.1)
n

n—roo

If p is not f-invariant, ¢¥(u) = —oo and so without loss of generality, we may assume that p € M;(X).
Given any 7 > 0, choose a neighborhood G’ C G such that | [ ¢du — [ dv| <n for any v € G'. Since f
satisfies the almost product property, it follows from Theorem 2.2 that there exists an ergodic measure
v € G’ such that h,(f) > h,(f) —n. Thus it follows from Theorem 2.3 and Proposition 3.1 that

1 1
liminf —logQ¢(G) = liminf — 1 Sne(@) _ p
iminf — log 2(G) im inf — log Z e (f, )

n—00 n—oo N
:L’EPn(f)ﬁXTLYG

> h(f) + / pdv — P(f,)

> hu(f)+/<pdu—P(f,<p)—2n-

Since 1 > 0 is arbitrary, we have (3.1), which proves Theorem 1.1.
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