Large Deviations and Periodic Orbits of Dynamical Systems without the Specification Property

Kenichiro Yamamoto *

Abstract

For a positively expansive continuous map or an expansive homeomorphism of a compact metric space satisfying the strong almost product property, we prove a level-2 large deviation principle for the distribution of periodic points. This is a generalization of the result shown by Kifer.

Key words: large deviation, periodic points, specification property, almost product property

1 Introduction

This paper is devoted to the study of level-2 large deviation principles for dynamical systems. Let (X,d) be a compact metric space and f be a continuous map from X to itself. We denote by $\mathcal{M}(X)$ the set of all Borel probability measures on X with the weak topology. We say that a sequence $\{\Omega_n\}$ of Borel probability measures on $\mathcal{M}(X)$ is said to satisfy a level-2 large deviation principle with a rate function $q \colon \mathcal{M}(X) \to [-\infty, 0]$ if q is upper semicontinuous,

$$\liminf_{n \to \infty} \frac{1}{n} \log \Omega_n(G) \ge \sup_{\mu \in G} q(\mu)$$

holds for any open set $G \subset \mathcal{M}(X)$ and

$$\limsup_{n \to \infty} \frac{1}{n} \log \Omega_n(F) \le \sup_{\mu \in F} q(\mu)$$

holds for any closed set $F \subset \mathcal{M}(X)$. Usually, Ω_n is taken as the distribution of periodic points, iterated preimages, or Birkhoff averages. See [4] for the precise definitions of them.

Large deviation problems for dynamical systems have been extensively studied by several authors such as [3, 4, 5, 6](the case of periodic-points), [4](the case of iterated-preimages) and [2, 4, 5, 11](the case of Birkhoff averages), but mainly under the condition that the dynamical system has the specification property. The specification property was introduced by Bowen [1] and holds for typical chaotic dynamical systems including transitive Anosov diffeomorphisms and topologically mixing subshifts of finite type. However, there are many dynamics without the specification, such as β -shifts, ergodic automorphisms and generic non-hyperbolic dynamical systems. Recently, Pfister and Sullivan proved that all β -shifts satisfy the level-2 large deviation principle in the special case of Birkhoff averages.

The aim of this paper is to investigate the large deviation principle for β -shifts in the case of periodic points. For a continuous function φ on X, we define a sequence $\{\Omega_n^{\varphi}\}$ of Borel probability measures on $\mathcal{M}(X)$ as

$$\Omega_n^{\varphi} := \sum_{x \in P_n(f)} \frac{\exp(S_n \varphi(x))}{\sum_{z \in P_n(f)} \exp(S_n \varphi(z))} \delta_{\mathcal{E}_n(x)}.$$

Here $P_n(f) = \{x \in X : f^n(x) = x\}$, $S_n\varphi(x) = \sum_{j=0}^{n-1} \varphi(f^j(x))$, $\mathcal{E}_n(x) = \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)}$ and δ_y denotes the Dirac mass at the point $y \in X$. In this paper, we call $\{\Omega_n^{\varphi}\}$ the distribution of periodic points (for φ). Now we state our main theorem of this paper.

^{*}College of Engineering and Design, Shibaura Institute of Technology and Department of Mathematics, Tokyo Institute of Technology

Theorem 1.1. Let $f: X \to X$ be a positively expansive continuous map or an expansive homeomorphism of a compact metric space (X, d). If f satisfies the strong almost product property, then for any continuous function φ , Ω_n^{φ} satisfies a large deviation principle with a rate function $q^{\varphi}: \mathcal{M}(X) \to [-\infty, 0]$ given by

$$q^{\varphi}(\mu) = \begin{cases} h_{\mu}(f) + \int \varphi d\mu - P(f, \varphi) & (\mu \in \mathcal{M}_f(X)); \\ -\infty & (\text{otherwise}). \end{cases}$$

Here $h_{\mu}(f)$ denotes the metric entropy of $\mu \in \mathcal{M}_f(X)$ and $P(f,\varphi)$ denotes the topological pressure of φ .

We know that all β -shifts satisfy the assumption of Theorem 1.1 (see [7, Example]). Thus, all β -shifts satisfy the level-2 large deviation principle in the case of periodic distributions.

In $\S 2$, we recall some background materials from ergodic theory, and give a proof of Theorem 1.1 in $\S 3$.

2 Preliminaries

Let (X,d) be a compact metric space and $f\colon X\to X$ be a continuous map. We denote by $\mathcal{M}(X)$ the set of all Borel probability measures on X with the weak topology and denote by $\mathcal{M}_f(X)$ the set of all f-invariant Borel probability measures on X. Let $C(X,\mathbb{R})$ be the Banach space of continuous real-valued functions of X with the sup norm $\|\cdot\|_{\infty}$. Since $C(X,\mathbb{R})$ is separable, there exists a countable set $\{\varphi_1,\varphi_2,\cdots\}$ which is dense in $C(X,\mathbb{R})$. For $\mu,\nu\in\mathcal{M}(X)$, we define

$$D(\mu,\nu) := \sum_{n=1}^{\infty} \frac{|\int \varphi_n d\mu - \int \varphi_n d\nu|}{2^{n+1} ||\varphi_n||_{\infty}}.$$

Then D is a compatible metric for $\mathcal{M}(X)$ and $(\mathcal{M}(X), D)$ is compact. It is easy to see that $D(\mu, \nu) \leq 1$ for any $\mu, \nu \in \mathcal{M}(X)$. For $\mu \in \mathcal{M}(X)$ and $\epsilon > 0$, we set $\mathbb{B}(\mu, \epsilon) := \{ \nu \in \mathcal{M}(X) : D(\mu, \nu) \leq \epsilon \}$.

A continuous map $f: X \to X$ is said to satisfy the *specification property* if for any $\epsilon > 0$, there is an integer M_{ϵ} such that for any $k \geq 1$ and k points $x_1, \dots, x_k \in X$ and for any sequence of integers $0 \leq a_1 \leq b_1 < a_2 \leq b_2 < \dots < a_k \leq b_k$ with $a_i - b_{i-1} \geq M_{\epsilon}$ $(2 \leq i \leq k)$, there is an $x \in X$ with $d(f^{a_i+j}(x), f^j(x_i)) \leq \epsilon$ $(0 \leq j \leq b_i - a_i, 1 \leq i \leq k)$. If such a point x can be chosen as a periodic point, then we say that f has the *strong specification property*. In [7], Pfister and Sullivan introduce a weaker form of the specification property, called almost product property.

Definition 2.1. We say that f has the almost product property if there exist $g: \mathbb{N} \to \mathbb{N}$ with $\lim_{n \to \infty} \frac{g(n)}{n} = 0$ and $m: \mathbb{R}^+ \to \mathbb{N}$ such that for any $k \geq 1$, any x_1, \dots, x_k , any $\epsilon_1 > 0, \dots, \epsilon_k > 0$ and any $n_1 \geq m(\epsilon_1), \dots, n_k \geq m(\epsilon_k)$, there exists $x \in X$ such that

$$\sharp \{0 \le j \le n_i - 1 : d(f^{j+n_1+\dots+n_{i-1}}(x), f^j(x_i)) > \epsilon_i\} \le g(n_i)$$

holds for any $1 \le i \le k$. Here $\sharp A$ denotes the cardinality of the set A. If such a point x can be chosen as a periodic point (i.e. $f^{n_1+\cdots+n_k}(x)=x$), then we say that f has the strong almost product property.

Example 2.1. Let $\beta > 1$ and $F^{\beta}(x) = F(x) = \beta x$. $f: [0,1] \to [0,1]$ is then defined by

$$f(x) = \begin{cases} 0 & (x = 0); \\ 1 & (x \neq 0, f(x) \in \mathbb{N}); \\ F(x) \mod 1 & (\text{otherwise}). \end{cases}$$

We define a_i as $f^{-1}(\{0\})\setminus\{1\} = \{a_1, \dots, a_p\}$ with $a_1 < \dots < a_p$ and set

$$I_0 := [0, a_1], I_1 := (a_1, a_2], \cdots, I_p := (a_p, 1].$$

Put $A := \{0, \dots, p\}$ and consider the shift space $(A^{\mathbb{Z}^+}, \sigma)$. We define $(c_i) \in A^{\mathbb{Z}^+}$ as $c_i = j$ if and only if $f^i(1) \in I_j$ and set

$$X^{\beta} := \{ \omega \in A^{\mathbb{Z}^+} : \sigma^k(\omega) \le (c_i), \ k \ge 0 \}.$$

Then X^{β} is a shift invariant closed subset of the full shift. We call the restriction of σ into X^{β} the β -shift. It is known that the specification property holds only for a set of β of Lebesgue measure 0 ([9]), but for any $\beta > 1$, β -shift satisfies the strong almost product property (see [7, Example]).

We review some known results which play an important role to prove Theorem 1.1.

Theorem 2.2. ([6, Theorem 2.1]) Let $f: X \to X$ be a continuous map of a compact metric space (X, d). If f satisfies the almost product property, then for any $\mu \in \mathcal{M}_f(X)$, any $h < h_{\mu}(f)$ and any neighborhood G of μ , there exists an ergodic measure $\nu \in G$ such that $h_{\nu}(f) > h$.

We say that a continuous map $f: X \to X$ is positively expansive if there exists c > 0 such that $d(f^n(x), f^n(y)) \leq c \ (n \geq 0)$ implies x = y. Similarly, a homeomorphism $f: X \to X$ is said to be expansive if there exists c > 0 such that $d(f^n(x), f^n(y)) \le c \ (n \in \mathbb{Z})$ implies x = y.

Theorem 2.3. ([10, Theorem 1.2]) Let $f: X \to X$ be a positively expansive continuous map or an expansive homeomorphism of a compact metric space (X, d). If f satisfies the strong almost product property, then for any $\varphi \in C(X, \mathbb{R})$,

$$P(f,\varphi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{x \in P_n(f)} e^{S_n \varphi(x)}$$

holds.

Let $\epsilon > 0$, $\delta > 0$ and $n \ge 1$. A subset E is called (δ, n, ϵ) -separated if for any two distinct points

$$\sharp \{0 < j < n-1 : d(f^j(x), f^j(y)) > \epsilon \} > \delta n$$

holds.

Proposition 2.4. ([6, Proposition 2.1]) Let μ be ergodic and $h < h_{\mu}(f)$. Then there exist $\epsilon > 0$ and $\delta > 0$ such that for any neighborhood F of μ in $\mathcal{M}(X)$, there exists $N \in \mathbb{N}$ so that for any $n \geq N$, there exists a (δ, n, ϵ) -separated set $\Gamma \subset X_{n,F}$ such that

$$\#\Gamma \ge e^{nh}$$

where $X_{n,F} := \{x \in X : \frac{1}{n} \sum_{i=0}^{n-1} \delta_{f^{i}(x)} \in F\}.$

Theorem 2.5. ([3, Theorem 6]) Let $f: X \to X$ be a positively expansive map or an expansive homeomorphism of a compact metric space (X, d). Then for any $\varphi \in C(X, \mathbb{R})$ and any closed set $F \subset \mathcal{M}_f(X)$, we have

$$\limsup_{n \to \infty} \frac{1}{n} \log \sum_{x \in P_n(f) \cap X_{n,F}} e^{S_n \varphi(x)} \le \sup_{\mu \in F} \left(h_{\mu}(f) + \int \varphi d\mu \right).$$

3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1.

Proposition 3.1. Let $f: X \to X$ be a continuous map of a compact metric space (X, d) and $\varphi \in C(X, \mathbb{R})$. Suppose that f satisfies the strong almost product property. Then for any ergodic measure μ and any open neighborhood G of μ , we have

$$\liminf_{n \to \infty} \frac{1}{n} \log \sum_{x \in P_n(f) \cap X_{n,G}} e^{S_n \varphi(x)} \ge h_{\mu}(f) + \int \varphi d\mu.$$

Proof. Given any $\eta > 0$, choose a sufficiently small $\gamma > 0$ such that $\mathbb{B}(\mu, 3\gamma) \subset G$ and for any $\nu \in \mathbb{B}(\mu, 3\gamma)$

$$\left| \int \varphi d\mu - \int \varphi d\nu \right| \le \eta$$

holds. It follows from Proposition 2.4 that there exist $\epsilon > 0$, $\delta > 0$ and $N \in \mathbb{N}$ such that for any $n \geq N$,

there exists a (δ, n, ϵ) -separated set $\Gamma \subset X_{n,\mathbb{B}(\mu,3\gamma)}$ with $\sharp \Gamma \geq e^{n(h_{\mu}(f)-\eta)}$. Since X is compact, we can find $\zeta > 0$ with $\zeta \leq \frac{\epsilon}{2}$ such that $D(\delta_x, \delta_y) \leq \gamma$ and $|\varphi(x) - \varphi(y)| \leq \eta$ whenever $d(x, y) \leq \zeta$. Let $m \colon \mathbb{R}^+ \to \mathbb{N}$ and $g \colon \mathbb{N} \to \mathbb{N}$ be as in Definition 2.1. Choose an integer n > 0 so

large that $n \ge \max\{N, m(\zeta)\}$ and $g(n) \le \eta n$ hold. Then by the strong almost product property, for any $z \in \Gamma$, there exists a point $\sigma(z) \in P_n(f)$ such that

$$\sharp \Lambda_z \leq g(n),$$

where $\Lambda_z := \{0 \le j \le n-1 : d(f^j(z), f^j(\sigma(z))) > \zeta\}$. Then for any $z \in \Gamma$, we have

$$D(\mu, \mathcal{E}_{n}(\sigma(z))) \leq D(\mu, \mathcal{E}_{n}(z)) + D(\mathcal{E}_{n}(z), \mathcal{E}_{n}(\sigma(z)))$$

$$\leq \frac{1}{n} \sum_{j \in \Lambda_{z}} D(\delta_{f^{j}(z)}, \delta_{f^{j}(\sigma(z))}) + \frac{1}{n} \sum_{j \in \{0, \dots, n-1\} \setminus \Lambda_{z}} D(\delta_{f^{j}(z)}, \delta_{f^{j}(\sigma(z))}) + \gamma$$

$$\leq \frac{g(n)}{n} + 2\gamma$$

$$\leq 3\gamma.$$

This implies $\sigma(Z) \in X_{n,G}$. Since Γ is (δ, n, ϵ) -separated, the map $\sigma \colon \Gamma \to P_n(f) \cap X_{n,G}$ is injective. Moreover by the choice of ζ ,

$$S_{n}\varphi(\sigma(z)) = \sum_{j \in \Lambda_{z}} \varphi(f^{j}(\sigma(z))) + \sum_{j \in \{0, \dots, n-1\} \setminus \Lambda_{z}} \varphi(f^{j}(\sigma(z)))$$

$$\geq \sum_{j \in \Lambda_{z}} \varphi(f^{j}(z)) - 2g(n) \|\varphi\|_{\infty} + \sum_{j \in \{0, \dots, n-1\} \setminus \Lambda_{z}} \varphi(f^{j}(z)) - \eta n$$

$$\geq S_{n}\varphi(z) - 2\eta n$$

holds for any $z \in \Gamma$. Therefore we have

$$\sum_{x \in P_n(f) \cap X_{n,F}} e^{S_n \varphi(x)} \geq \sum_{z \in \Gamma} e^{S_n \varphi(\sigma(z))}$$

$$\geq \sum_{z \in \Gamma} e^{S_n \varphi(z) - 2\eta n}$$

$$\geq \sum_{z \in \Gamma} e^{n(\int \varphi d\mu - 3\eta)}$$

$$= \sharp \Gamma e^{n(\int \varphi d\mu - 3\eta)}$$

$$\geq e^{n(h_{\mu}(f) + \int \varphi d\mu - 4\eta)},$$

which proves the proposition.

Now we give a proof of Theorem 1.1. The upper estimate

$$\limsup_{n \to \infty} \frac{1}{n} \log \Omega_n^{\varphi}(F) \le \sup_{\mu \in F} q^{\varphi}(\mu) \qquad (F \subset \mathcal{M}(X) : \text{ closed})$$

is a directly consequence of Theorems 2.3 and 2.5.

Let $G \subset \mathcal{M}(X)$ be an open subset and $\mu \in G$. In what follows we will show that

$$\liminf_{n \to \infty} \frac{1}{n} \log \Omega_n^{\varphi}(G) \ge q^{\varphi}(\mu). \tag{3.1}$$

If μ is not f-invariant, $q^{\varphi}(\mu) = -\infty$ and so without loss of generality, we may assume that $\mu \in \mathcal{M}_f(X)$. Given any $\eta > 0$, choose a neighborhood $G' \subset G$ such that $|\int \varphi d\mu - \int \varphi d\nu| \leq \eta$ for any $\nu \in G'$. Since f satisfies the almost product property, it follows from Theorem 2.2 that there exists an ergodic measure $\nu \in G'$ such that $h_{\nu}(f) > h_{\mu}(f) - \eta$. Thus it follows from Theorem 2.3 and Proposition 3.1 that

$$\lim_{n \to \infty} \inf \frac{1}{n} \log \Omega_n^{\varphi}(G) = \lim_{n \to \infty} \inf \frac{1}{n} \log \sum_{x \in P_n(f) \cap X_{n,G}} e^{S_n \varphi(x)} - P(f, \varphi)$$

$$\geq h_{\nu}(f) + \int \varphi d\nu - P(f, \varphi)$$

$$\geq h_{\mu}(f) + \int \varphi d\mu - P(f, \varphi) - 2\eta.$$

Since $\eta > 0$ is arbitrary, we have (3.1), which proves Theorem 1.1.

References

- [1] R. Bowen, Some systems with unique equilibrium state, Math. Systems Theory 8 (1974), 193-202.
- [2] A. Eizenberg, Y. Kifer and B. Weiss, Large deviations for \mathbb{Z}^d -actions, Comm. Math. Phys. **164** (1994), 433-454.
- [3] K. Gelfert and C. Wolf, *Topological pressure via saddle points*, Trans. Amer. Math. Soc. **360** (2008), 545-561.
- [4] C. Henri and R.-L. Juan, Large deviation principles for non-uniformly hyperbolic rational maps, Ergodic Theory Dynam. Systems 31, no. 2 (2011), 321-349.
- [5] Y. Kifer, Large deviations, averaging and periodic orbits of dynamical systems, Comm. Math. Phys. **162** (1994), 33-46.
- [6] C.-E. Pfister and W.G. Sullivan, Large Deviations Estimates for Dynamical Systems without the Specification Property. Application to the β -shifts, Nonlinearity 18 (2005), 237-261.
- [7] C.-E. Pfister and W.G. Sullivan, On the Topological Entropy of Saturated Sets, Ergodic Theory Dynam. Systems 27 (2007), 929-956.
- [8] M. Pollicott and S. Sridharan, Large deviation results for periodic points of a rational map, J. Dyn. Syst. Geom. Theor. 5, no. 1 (2007), 69–77.
- [9] J. Schmeling, Symbolic dynamics for β -shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), 675-694.
- [10] K. Yamamoto, On the weaker forms of the specification property and their applications, Proc. Amer. Math. Soc. 137 (2009), 3807-3814.
- [11] L.-S. Young, Some Large Deviation results for Dynamical Systems, Trans. Amer. Math. Soc. 318, no. 2 (1990), 525–543.