
Large Deviations and Periodic Orbits of Dynamical Systems

without the Specification Property

Kenichiro Yamamoto ∗

Abstract

For a positively expansive continuous map or an expansive homeomorphism of a compact metric
space satisfying the strong almost product property, we prove a level-2 large deviation principle for
the distribution of periodic points. This is a generalization of the result shown by Kifer.
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1 Introduction

This paper is devoted to the study of level-2 large deviation principles for dynamical systems. Let
(X, d) be a compact metric space and f be a continuous map from X to itself. We denote by M(X) the
set of all Borel probability measures on X with the weak topology. We say that a sequence {Ωn} of Borel
probability measures on M(X) is said to satisfy a level-2 large deviation principle with a rate function
q : M(X) → [−∞, 0] if q is upper semicontinuous,

lim inf
n→∞

1

n
log Ωn(G) ≥ sup

µ∈G
q(µ)

holds for any open set G ⊂ M(X) and

lim sup
n→∞

1

n
log Ωn(F ) ≤ sup

µ∈F
q(µ)

holds for any closed set F ⊂ M(X). Usually, Ωn is taken as the distribution of periodic points, iterated
preimages, or Birkhoff averages. See [4] for the precise definitions of them.

Large deviation problems for dynamical systems have been extensively studied by several authors such
as [3, 4, 5, 6](the case of periodic-points), [4](the case of iterated-preimages) and [2, 4, 5, 11](the case
of Birkhoff averages), but mainly under the condition that the dynamical system has the specification
property. The specification property was introduced by Bowen [1] and holds for typical chaotic dynamical
systems including transitive Anosov diffeomorphisms and topologically mixing subshifts of finite type.
However, there are many dynamics without the specification, such as β-shifts, ergodic automorphisms
and generic non-hyperbolic dynamical systems. Recently, Pfister and Sullivan proved that all β-shifts
satisfy the level-2 large deviation principle in the special case of Birkhoff averages.

The aim of this paper is to investigate the large deviation principle for β-shifts in the case of periodic
points. For a continuous function φ on X, we define a sequence {Ωφ

n} of Borel probability measures on
M(X) as

Ωφ
n :=

∑
x∈Pn(f)

exp(Snφ(x))∑
z∈Pn(f)

exp(Snφ(z))
δEn(x).

Here Pn(f) = {x ∈ X : fn(x) = x}, Snφ(x) =
∑n−1

j=0 φ(f j(x)), En(x) = 1
n

∑n−1
j=0 δfj(x) and δy denotes

the Dirac mass at the point y ∈ X. In this paper, we call {Ωφ
n} the distribution of periodic points (for

φ). Now we state our main theorem of this paper.
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Theorem 1.1. Let f : X → X be a positively expansive continuous map or an expansive homeomorphism
of a compact metric space (X, d). If f satisfies the strong almost product property, then for any continuous
function φ, Ωφ

n satisfies a large deviation principle with a rate function qφ : M(X) → [−∞, 0] given by

qφ(µ) =

{
hµ(f) +

∫
φdµ− P (f, φ) (µ ∈ Mf (X));

−∞ (otherwise).

Here hµ(f) denotes the metric entropy of µ ∈ Mf (X) and P (f, φ) denotes the topological pressure of φ.

We know that all β-shifts satisfy the assumption of Theorem 1.1 (see [7, Example]). Thus, all β-shifts
satisfy the level-2 large deviation principle in the case of periodic distributions.

In §2, we recall some background materials from ergodic theory, and give a proof of Theorem 1.1 in
§3.

2 Preliminaries

Let (X, d) be a compact metric space and f : X → X be a continuous map. We denote by M(X)
the set of all Borel probability measures on X with the weak topology and denote by Mf (X) the set
of all f -invariant Borel probability measures on X. Let C(X,R) be the Banach space of continuous
real-valued functions of X with the sup norm ∥ · ∥∞. Since C(X,R) is separable, there exists a countable
set {φ1, φ2, · · · } which is dense in C(X,R). For µ, ν ∈ M(X), we define

D(µ, ν) :=

∞∑
n=1

|
∫
φndµ−

∫
φndν|

2n+1∥φn∥∞
.

Then D is a compatible metric for M(X) and (M(X), D) is compact. It is easy to see that D(µ, ν) ≤ 1
for any µ, ν ∈ M(X). For µ ∈ M(X) and ϵ > 0, we set B(µ, ϵ) := {ν ∈ M(X) : D(µ, ν) ≤ ϵ}.

A continuous map f : X → X is said to satisfy the specification property if for any ϵ > 0, there is
an integer Mϵ such that for any k ≥ 1 and k points x1, · · · , xk ∈ X and for any sequence of integers
0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with ai − bi−1 ≥ Mϵ (2 ≤ i ≤ k), there is an x ∈ X with
d(fai+j(x), f j(xi)) ≤ ϵ (0 ≤ j ≤ bi − ai, 1 ≤ i ≤ k). If such a point x can be chosen as a periodic point,
then we say that f has the strong specification property. In [7], Pfister and Sullivan introduce a weaker
form of the specification property, called almost product property.

Definition 2.1. We say that f has the almost product property if there exist g : N → N with limn→∞
g(n)
n =

0 and m : R+ → N such that for any k ≥ 1, any x1, · · · , xk, any ϵ1 > 0, · · · , ϵk > 0 and any n1 ≥
m(ϵ1), · · · , nk ≥ m(ϵk), there exists x ∈ X such that

♯{0 ≤ j ≤ ni − 1 : d(f j+n1+···+ni−1(x), f j(xi)) > ϵi} ≤ g(ni)

holds for any 1 ≤ i ≤ k. Here ♯A denotes the cardinality of the set A. If such a point x can be chosen as
a periodic point (i.e. fn1+···+nk(x) = x), then we say that f has the strong almost product property.

Example 2.1. Let β > 1 and F β(x) = F (x) = βx. f : [0, 1] → [0, 1] is then defined by

f(x) =

 0 (x = 0);
1 (x ̸= 0, f(x) ∈ N);
F (x) mod 1 (otherwise).

We define ai as f
−1({0})\{1} = {a1, · · · , ap} with a1 < · · · < ap and set

I0 := [0, a1], I1 := (a1, a2], · · · , Ip := (ap, 1].

Put A := {0, · · · , p} and consider the shift space (AZ+

, σ). We define (ci) ∈ AZ+

as ci = j if and only if
f i(1) ∈ Ij and set

Xβ := {ω ∈ AZ+

: σk(ω) ≤ (ci), k ≥ 0}.

Then Xβ is a shift invariant closed subset of the full shift. We call the restriction of σ into Xβ the β-shift.
It is known that the specification property holds only for a set of β of Lebesgue measure 0 ([9]), but for
any β > 1, β-shift satisfies the strong almost product property (see [7, Example]).

2



We review some known results which play an important role to prove Theorem 1.1.

Theorem 2.2. ([6, Theorem 2.1]) Let f : X → X be a continuous map of a compact metric space (X, d).
If f satisfies the almost product property, then for any µ ∈ Mf (X), any h < hµ(f) and any neighborhood
G of µ, there exists an ergodic measure ν ∈ G such that hν(f) > h.

We say that a continuous map f : X → X is positively expansive if there exists c > 0 such that
d(fn(x), fn(y)) ≤ c (n ≥ 0) implies x = y. Similarly, a homeomorphism f : X → X is said to be
expansive if there exists c > 0 such that d(fn(x), fn(y)) ≤ c (n ∈ Z) implies x = y.

Theorem 2.3. ([10, Theorem 1.2]) Let f : X → X be a positively expansive continuous map or an
expansive homeomorphism of a compact metric space (X, d). If f satisfies the strong almost product
property, then for any φ ∈ C(X,R),

P (f, φ) = lim
n→∞

1

n
log

∑
x∈Pn(f)

eSnφ(x)

holds.

Let ϵ > 0, δ > 0 and n ≥ 1. A subset E is called (δ, n, ϵ)-separated if for any two distinct points
x, y ∈ E,

♯{0 ≤ j ≤ n− 1 : d(f j(x), f j(y)) > ϵ} > δn

holds.

Proposition 2.4. ([6, Proposition 2.1]) Let µ be ergodic and h < hµ(f). Then there exist ϵ > 0 and
δ > 0 such that for any neighborhood F of µ in M(X), there exists N ∈ N so that for any n ≥ N , there
exists a (δ, n, ϵ)-separated set Γ ⊂ Xn,F such that

♯Γ ≥ enh,

where Xn,F := {x ∈ X : 1
n

∑n−1
j=0 δfj(x) ∈ F}.

Theorem 2.5. ([3, Theorem 6]) Let f : X → X be a positively expansive map or an expansive homeo-
morphism of a compact metric space (X, d). Then for any φ ∈ C(X,R) and any closed set F ⊂ Mf (X),
we have

lim sup
n→∞

1

n
log

∑
x∈Pn(f)∩Xn,F

eSnφ(x) ≤ sup
µ∈F

(
hµ(f) +

∫
φdµ

)
.

3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1.

Proposition 3.1. Let f : X → X be a continuous map of a compact metric space (X, d) and φ ∈ C(X,R).
Suppose that f satisfies the strong almost product property. Then for any ergodic measure µ and any
open neighborhood G of µ, we have

lim inf
n→∞

1

n
log

∑
x∈Pn(f)∩Xn,G

eSnφ(x) ≥ hµ(f) +

∫
φdµ.

Proof. Given any η > 0, choose a sufficiently small γ > 0 such that B(µ, 3γ) ⊂ G and for any ν ∈ B(µ, 3γ)∣∣∣∣∫ φdµ−
∫

φdν

∣∣∣∣ ≤ η

holds. It follows from Proposition 2.4 that there exist ϵ > 0, δ > 0 and N ∈ N such that for any n ≥ N ,
there exists a (δ, n, ϵ)-separated set Γ ⊂ Xn,B(µ,3γ) with ♯Γ ≥ en(hµ(f)−η).

Since X is compact, we can find ζ > 0 with ζ ≤ ϵ
2 such that D(δx, δy) ≤ γ and |φ(x) − φ(y)| ≤ η

whenever d(x, y) ≤ ζ. Let m : R+ → N and g : N → N be as in Definition 2.1. Choose an integer n > 0 so
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large that n ≥ max{N,m(ζ)} and g(n) ≤ ηn hold. Then by the strong almost product property, for any
z ∈ Γ, there exists a point σ(z) ∈ Pn(f) such that

♯Λz ≤ g(n),

where Λz := {0 ≤ j ≤ n− 1 : d(f j(z), f j(σ(z))) > ζ}. Then for any z ∈ Γ, we have

D(µ, En(σ(z))) ≤ D(µ, En(z)) +D(En(z), En(σ(z)))

≤ 1

n

∑
j∈Λz

D(δfj(z), δfj(σ(z))) +
1

n

∑
j∈{0,··· ,n−1}\Λz

D(δfj(z), δfj(σ(z))) + γ

≤ g(n)

n
+ 2γ

≤ 3γ.

This implies σ(Z) ∈ Xn,G. Since Γ is (δ, n, ϵ)-separated, the map σ : Γ → Pn(f) ∩ Xn,G is injective.
Moreover by the choice of ζ,

Snφ(σ(z)) =
∑
j∈Λz

φ(f j(σ(z))) +
∑

j∈{0,··· ,n−1}\Λz

φ(f j(σ(z)))

≥
∑
j∈Λz

φ(f j(z))− 2g(n)∥φ∥∞ +
∑

j∈{0,··· ,n−1}\Λz

φ(f j(z))− ηn

≥ Snφ(z)− 2ηn

holds for any z ∈ Γ. Therefore we have∑
x∈Pn(f)∩Xn,F

eSnφ(x) ≥
∑
z∈Γ

eSnφ(σ(z))

≥
∑
z∈Γ

eSnφ(z)−2ηn

≥
∑
z∈Γ

en(
∫
φdµ−3η)

= ♯Γen(
∫
φdµ−3η)

≥ en(hµ(f)+
∫
φdµ−4η),

which proves the proposition.

Now we give a proof of Theorem 1.1. The upper estimate

lim sup
n→∞

1

n
log Ωφ

n(F ) ≤ sup
µ∈F

qφ(µ) (F ⊂ M(X) : closed)

is a directly consequence of Theorems 2.3 and 2.5.
Let G ⊂ M(X) be an open subset and µ ∈ G. In what follows we will show that

lim inf
n→∞

1

n
log Ωφ

n(G) ≥ qφ(µ). (3.1)

If µ is not f -invariant, qφ(µ) = −∞ and so without loss of generality, we may assume that µ ∈ Mf (X).
Given any η > 0, choose a neighborhood G′ ⊂ G such that |

∫
φdµ−

∫
φdν| ≤ η for any ν ∈ G′. Since f

satisfies the almost product property, it follows from Theorem 2.2 that there exists an ergodic measure
ν ∈ G′ such that hν(f) > hµ(f)− η. Thus it follows from Theorem 2.3 and Proposition 3.1 that

lim inf
n→∞

1

n
log Ωφ

n(G) = lim inf
n→∞

1

n
log

∑
x∈Pn(f)∩Xn,G

eSnφ(x) − P (f, φ)

≥ hν(f) +

∫
φdν − P (f, φ)

≥ hµ(f) +

∫
φdµ− P (f, φ)− 2η.

Since η > 0 is arbitrary, we have (3.1), which proves Theorem 1.1.
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