
ERGODIC OPTIMIZATION FOR CONTINUOUS FUNCTIONS
ON THE DYCK-MOTZKIN SHIFTS

MAO SHINODA, HIROKI TAKAHASI, KENICHIRO YAMAMOTO

Abstract. Ergodic optimization aims to describe dynamically invariant prob-
ability measures that maximize the integral of a given function. The Dyck and
the Motzkin shifts are well-known examples of transitive subshifts that are not
intrinsically ergodic. We show that the space of continuous functions on any
Dyck-Motzkin shift splits into two subsets: one is a dense Gδ set with empty in-
terior for which any maximizing measure has zero entropy; the other is contained
in the closure of the set of functions having uncountably many, fully supported
measures that are Bernoulli. One key ingredient of a proof of this result is the
path connectedness of the space of ergodic measures of the Dyck-Motzkin shift.

1. Introduction

Ergodic optimization aims to describe properties of dynamically invariant max-
imizing measures. In its most basic form, main constituent components are: a
continuous map T of a compact metric space X; the spaceM(X,T ) of T -invariant
Borel probability measures endowed with the weak* topology together with the
space M e(X,T ) of its ergodic elements; a continuous function f : X → R. Ele-
ments of M(X,T ) that attain the supremum

(1.1) ΛT (f) = sup

{∫
fdµ : µ ∈M(X,T )

}
are called f -maximizing measures. The set of f -maximizing measures, denoted by
Mmax(f), is non-empty and contains elements of M e(X,T ). For a given (X,T )
and a Banach space of real-valued functions on X, we aim to establish properties
of elements of Mmax(f) for a ‘typical’ function f in the space. The regularity
of functions is crucial. For (X,T ) with some expanding or hyperbolic behavior
and a Hölder continuous f , the Mañé-Conze-Guivarc’h lemma characterizes f -
maximizing measures via their supports [1, 2, 9, 28]. The analysis of functions
in the space C(X) of real-valued continuous functions on X endowed with the
supremum norm ∥ · ∥C0 is completely different: the Mañé-Conze-Guivarc’h lemma
is no longer valid, but duality arguments are available and can be used to prove
the occurrence of pathological phenomena.

Morris [29, Corollary 2] proved that for (X,T ) with Bowen’s specification prop-
erty [4], the maximizing measure is unique, fully supported on X (charging any
non-empty open subset of X), has zero entropy, and is not strongly mixing for a
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generic continuous function, thereby unifying the the result of Bousch and Jenk-
inson [3] and that of Brémont [6]. In contrast to Morris’s result, Shinoda [31,
Theorem A] proved that for a dense set of continuous functions on a topologically
mixing Markov shift (subshift of finite type), there exist uncountably many, fully
supported ergodic maximizing measures with positive entropy, which are actually
Bernoulli. For an analogous result on expanding Markov interval maps with holes,
see [32].

As a generalization and unification of the result of Morris [29, Corollary 2] and
that of Shinoda [31, Theorem A] concerning entropies and supports of maximizing
measures, in [33] the authors proved the following statement for a wide class of
non-Markov subshifts Σ over a finite alphabet: There exists a constant h⊥spec(Σ) ∈
[0, htop(Σ)) such that if h⊥spec(Σ) ≤ H < htop(Σ) then

(I) the set {f ∈ C(Σ) : h(µ) ≤ H for all µ ∈Mmax(f)} is dense Gδ;
(II) for any f ∈ C(Σ) not contained in the dense Gδ set in (I) and for any neigh-

borhood U of f in C(Σ), there exists g ∈ U such that {µ ∈Mmax(g) : h(µ) >
H} contains uncountably many fully supported ergodic measures,

where htop(Σ) < ∞ denotes the topological entropy of Σ, and h(µ) ∈ [0, htop(Σ)]
denotes the measure-theoretic entropy of a shift-invariant measure µ on Σ. The
constant h⊥spec(Σ) is called the obstruction entropy to specification [8]. Recall that
dense Gδ sets are countable intersections of open dense subsets, and a property
that holds for a dense Gδ set is said to be generic.

A subshift carrying a unique measure of maximal entropy is called intrinsically
ergodic. The statement in the previous paragraph requires h⊥spec(Σ) < htop(Σ)
that actually implies the intrinsic ergodicity of the subshift Σ [7, Theorem C].
Therefore, it is natural to ask if an analogous statement holds for a subshift that
is not intrinsically ergodic.

As a counterexample to the conjecture of Weiss [37], Krieger [21] proved that
the Dyck shift has exactly two ergodic measures of maximal entropy. The Motzkin
shift [25, 26] is a subshift determined by the Dyck shift and the units. Krieger [22]
introduced a certain class of shift spaces having some algebraic property, called
property A subshifts. The Dyck and Motzkin shifts are prototypes in this class,
and rich sources of interesting phenomena different from those in Markov shifts,
see [16, 25, 26, 27, 36] for example. In this paper we consider ergodic optimization
for continuous functions on these subshifts that are not intrinsically ergodic.

1.1. Ergodic optimization for continuous functions. In Section 2.2 we will
introduce shift spaces ΣD with two non-negative integer parameters (M,N), called
the Dyck-Motzkin shifts. The (M, 0) Dyck-Motzkin shift is nothing but the Dyck
shift on 2M symbols, consisting ofM brackets, left and right in pair, whose admis-
sible words are words of legally aligned brackets. The (M,N) Dyck-Motzkin shift
with N ̸= 0 is nothing but the Motzkin shift on 2M + N symbols, consisting of
the M brackets and N units whose admissible words are words of legally aligned
brackets with freely interspersed units. Our main result below recovers the above
(I) (II) with H = 0 for the Dyck-Motzkin shifts.

Theorem A. Let ΣD be a Dyck-Motzkin shift.
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(a) The set {f ∈ C(ΣD) : h(µ) = 0 for all µ ∈Mmax(f)} is dense Gδ.
(b) There exists a dense subset D of C(ΣD) such that for any f ∈ D , Mmax(f)

contains uncountably many elements that are fully supported on ΣD and
Bernoulli.

Statements like Theorem A replacing ‘Bernoulli’ in (b) by ‘ergodic, positive
entropy’ were obtained in [33, Theorem B] for any subshift Σ for which htop(Σ) >
h⊥spec(Σ) = 0 and ergodic measures are entropy dense. The definition of entropy
density can be found in [12]. For the (M,N) Dyck-Motzkin shift ΣD, we note
that htop(ΣD) = h⊥spec(ΣD) = log(M +N + 1) holds, and ergodic measures are not
entropy dense.

For proofs of (a) and (b) of Theorem A, we develop ideas of Morris [29, The-
orem 1.1, Corollary 2] and Shinoda [31, Theorem A] respectively, both related
to approximations of ergodic measures in the weak* topology. Regarding (a),
a key observation is that Bowen’s specification property does not hold for the
Dyck-Motzkin shift, but the hypothesis of Bowen’s specification property in [29,
Corollary 2] can actually be weakened to the density of invariant measures of zero
entropy in the space of ergodic measures. For any Dyck-Motzkin shift, we show
in Section 2.7 that CO-measures (shift-invariant ergodic measures supported on
periodic orbits) are dense in the space of ergodic measures. This property allows
us to slightly modify the argument in the proof of [29, Theorem 1.1] to conclude
Theorem A(a).

The proof of Theorem A(b) deserves a special attention as it gives a new insight
into the structure of the spaces of ergodic measures of the Dyck-Motzkin shifts.
Below we give further explanations, but first require simple definitions. Let X
be a topological space and let x, y ∈ X be distinct points. A continuous map
p : [0, 1]→ X such that p(0) = x and p(1) = y is called a path joining x, y. We say
a path p : [0, 1]→ X lies in Y ⊂ X if p(t) ∈ Y holds for all t ∈ [0, 1].
Israel [19, Section V] proved an approximation theorem about tangent function-

als to convex functions, and used it for lattice systems in statistical mechanics to
prove the existence of a dense set of continuous interactions that admit uncount-
ably many ergodic equilibrium states. Shinoda’s proof of [31, Theorem A] is an
adaptation of Israel’s argument to ergodic optimization that is briefly outlined as
follows. For a real-valued continuous function f0 on a compact metric space X
and a continuous map T : X → X such that M e(X,T ) is arcwise connected, she
took an ergodic measure µ ∈ Mmax(f0) and a path t ∈ [0, 1] 7→ µt ∈ M e(X,T )
such that µ0 = µ, and then used the version of the Bishop-Phelps theorem [19,
Theorem V.1.1] to approximate f0 by f ∈ C(X) so that {µt : t ∈ [0, 1]} con-
tains uncountably many elements of Mmax(f). One can control properties of the
maximizing measures by carefully choosing the path. To choose a path such that
the uncountably many maximizing measures are fully supported and Bernoulli,
Shinoda used Sigmund’s result [35, Theorem B] which asserts that the space of
shift-invariant ergodic mesures on a topologically mixing Markov shift is path con-
nected.

Our strategy for the proof of Theorem A(b) is to substantially extend Shinoda’s
path argument to the Dyck-Motzkin shifts. Since the Dyck-Motzkin shifts are not
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Markov, Sigmund’s result [35, Theorem B] is no longer valid. To overcome this
difficulty, we delve into the structure of the shift space and show the following
abundance of paths of ergodic measures of high complexity:

(1) Any pair of ergodic measures of the Dyck-Motzkin shift in any weak* open
ball can be joined by a path that lies in that ball, and moreover

(2) this path ‘almost’ lies in the set of measures that are fully supported and
Bernoulli.

Since any Dyck-Motzkin shift contains many subshifts of finite type (SFTs) in
its shift space, Sigmund’s result [35, Theorem B] can still be used to find a high
complexity path joining two ergodic measures for the Dyck-Motzkin shift that are
supported on the same properly embedded SFT. Proper embedding means a one-
to-one, into but not onto conjugacy of shift spaces. It is not always possible to find
an SFT that supports a given pair of ergodic measures. Hamachi and Inoue [16,
Theorem 5.3] provided a necessary and sufficient condition for the existence of a
proper embedding of an irreducible SFT into the Dyck shift in terms of topological
entropy of the shift spaces and multipliers of periodic points in them. From their
result it immediately follows that for any integer M ≥ 2, there is no SFT of
entropy log(M + 1) that can be embedded into the Dyck shift on 2M symbols.
For a corresponding result on the property A subshifts, see [17, Theorem 5.8]. In
particular, there is no embedded SFT in the Dyck shift that supports the two
ergodic measures of maximal entropy log(M + 1) constructed by Krieger [21]. An
analogous statement holds for the Motzkin shift.

Krieger’s construction of the two ergodic measures of maximal entropy for the
Dyck shift relies on the construction of two different Borel embeddings of the full
shift on M + 1 symbols into the Dyck shift. Borel embedding means a one-to-one
conjugacy defined on a shift-invariant proper Borel subset that does not have a
continuous extension to the whole shift space (see Section 2.6 for the definition). In
order to prove (1) (2), we begin by extending Krieger’s construction [21, Section 4]
of Borel embeddings of the full shifts to the Dyck-Motzkin shift ΣD. We then
transport sequences of ergodic measures on ΣD to the two full shift spaces via the
inverses of these Borel embeddings, and construct paths joining the transported
measures. Finally, we transport these paths back to the space of ergodic measures
on ΣD, and concatenate the transported paths to obtain a desired path. Since the
Borel embeddings do not have continuous extensions to the whole full shift spaces,
the transport in the last step needs a justification. For precise statements of (1)
(2) with relevant definitions and more detailed explanations, see Section 3.1.

1.2. Connectedness of spaces of ergodic measures. Recall that a topological
space X is path connected if for any pair x, y of its distinct points there exists a
path that lies in X and joins x, y. We say X is arcwise connected if it is path
connected and the path can be taken to be a homemorphism onto its image. We
say X is locally path connected (resp. locally arcwise connected) if any point in
it has a neighborhood base consisting of open sets that are path connected (resp.
arcwise connected). For a Hausdorff space, the path connectedness implies the
arcwise connectedness.
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The property (1) immediately yields the following result.

Theorem B. The space of shift-invariant ergodic Borel probability measures on
any Dyck-Motzkin shift is path connected and locally path connected with respect to
the weak* topology.

An investigation of the topological structure of the space M(X,T ) began with
the works of Sigmund [34, 35] in the 70s, and has recently gained a renewed im-
petus. One motivation comes from the fact that every Polish topological space is
homeomorphic to a set of ergodic measures of some shift space over a finite alpha-
bet, which follows from [18, Theorem] and [11, Theorem 5]. The space M(X,T ) is
a Choquet simplex whose extreme points are precisely the set M e(X,T ) of ergodic
measures. Choquet simplices with dense extreme points are isomorphic up to affine
homeomorphisms, and the unique simplex is called the Poulsen simplex [30]. If
M(X,T ) is a Poulsen simplex, then the path connectedness and the local path
connectedness of M e(X,T ) follow from a complete description of the topological
structure of the Poulsen simplex given in [24].

The space of ergodic measures of any Dyck-Motzkin shift is not Poulsen, and it
is path connected by Theorem B. In his blog, Climenhaga gave a rough sketch of a
proof of the path connectedness of the space of ergodic measures of the Dyck shift.
However a justification is needed. For other examples of subshifts whose spaces
of ergodic measures are not Poulsen and path connected, see [20, Corollary 7] and
[23, Section 4]. For relevant results on structures of the spaces of ergodic measures
of partially hyperbolic diffeomorphisms, see [10, 15]. A sufficient condition for the
path connectedness ofM e(X,T ) in terms of periodic points and CO-measures of T
was given in [14, Theorem 6.1], which however does not apply to the Dyck-Motzkin
shift. In any of these previous works, there was no discussion on the local path
connectedness of the space of ergodic measures. Needless to say, a proof of the local
path connectedness is more delicate than that of the mere path connectedness.

The rest of this paper consists of three sections. In Section 2 we collect pre-
liminary results needed for the proofs of our main results. In Section 3 we give
precise statements of (1) (2) and prove them. In Section 4 we complete the proofs
of Theorems A and B.

2. Preliminaries

In this section we collect preliminary results needed for the proofs of our main
results. After recalling basic terms and notation in symbolic dynamics in Sec-
tion 2.1, we introduce the Dyck-Motzkin shifts in Section 2.2. Following Krieger
[21, Section 4], in Section 2.3 we classify ergodic measures of the Dyck-Motzkin
shifts into three types, and in Section 2.4 construct embeddings of two full shifts
on M + N + 1 symbols into the (M,N) Dyck-Motzkin shift. In Section 2.5 we
deal with a transportation of ergodic measures by means of these embeddings.
In Section 2.6 we show that the embeddings constructed in Section 2.4 are Borel
embeddings. In Section 2.7 we prove an approximation result by CO-measures for
the Dyck-Motzkin shifts.
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2.1. Basic terms and notation. Let S be a non-empty finite discrete set, called
a finite alphabet and let SZ denote the two-sided Cartesian product topological
space of S. The left shift acts continuously on SZ. A shift-invariant closed subset
of SZ is called a subshift over S. A finite string ω = ω1ω2 · · ·ωn of elements of S
is called a word of length n in S. For convenience, we introduce an empty word
∅ by the rules ∅ω = ω∅ = ω for any word ω in S. The word length of the empty
word is set to be 0. For a subshift Σ over S and n ∈ N∪{0}, let Ln(Σ) denote the
collection of words in S of word length n that appear in some elements of Σ. Put
L(Σ) =

⋃
n∈N∪{0} Ln(Σ). Words in L(Σ) \ {∅} are called admissible. For a subshift

Σ and for j ∈ Z, n ∈ N, ω ∈ Ln(Σ), define

Σ(j;ω) = {(xi)i∈Z ∈ Σ: xi+j−1 = ωi for i = 1, . . . , n}.
Unless otherwise stated, we use the letter σ to denote the left shift acting on a
subshift Σ: (σx)i = xi+1 for all i ∈ Z. For a subshift Σ, let M(Σ) denote the
space of shift-invariant Borel probability measures on Σ endowed with the weak*
topology, and let M e(Σ) denote the space of elements of M(Σ) that are ergodic.
For a sequence {µn}n∈N of Borel probability measures on Σ that converges to
µ ∈M(Σ) in the weak* topology, we write µn → µ.
Let t ∈ N and let A = (aij) be a t × t matrix all whose entries are 0 or 1. We

assume that every row of A has a nonzero entry. The subshift

ΣA = {(xi)i∈Z ∈ {1, . . . , t}Z : axixi+1
= 1 for all i ∈ Z}

is called a Markov shift or a subshift of finite type (SFT) determined by the tran-
sition matrix A. In the case aij = 1 for all i, j ∈ {1, . . . , t}, ΣA is called the full

shift on t symbols. Write An = (a
(n)
ij ) for n ∈ N. We say ΣA is topologically mixing

if there exists n ∈ N such that a
(n)
ij ̸= 0 for all i, j ∈ {1, . . . , t}.

2.2. The Dyck-Motzkin shift. Let M ≥ 2, N ≥ 0 be integers and let

Dα = {α1, . . . , αM} and Dβ = {β1, . . . , βM},
which are interpreted as sets of left brackets and right brackets respectively: αi

and βi are in pair for i = 1, . . . ,M . The (M,N) Dyck-Motzkin shift is a two-sided
subshift over the finite alphabet

D = Dα ∪D0 ∪Dβ,

which consists of 2M+N symbols where #D0 = N . If N = 0 then D0 is an empty
set. If N ̸= 0 then we write D0 = {11, . . . , 1N}. Let D∗ denote the set of finite
words in D. Consider the monoid with zero, with 2M + N generators in D and
the unit element 1 with relations

αi · βj = δi,j, 0 · 0 = 0, 1k · 1ℓ = 1 for i, j ∈ {1, . . . ,M}, k, ℓ ∈ {1, . . . , N},
ω · 1 = 1 · ω = ω, ω · 0 = 0 · ω = 0 for ω ∈ D∗ ∪ {1},
ω · 1ℓ = 1ℓ · ω = ω for ω ∈ D∗ and ℓ ∈ {1, . . . , N},

where δi,j denotes Kronecker’s delta. For n ∈ N and ω1 · · ·ωn ∈ D∗ let

red(ω1 · · ·ωn) =
n∏

i=1

ωi.
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Figure 1. Part of the labeled directed graph associated with the
(2, 1) Dyck-Motzkin shift. Each upward (resp. downward) edge is
labeled with α1 or α2 (resp. β1 or β2). Each vertex has one loop
edge labeled with 11.

The (M,N) Dyck-Motzkin shift is defined by

ΣD = {x = (xi)i∈Z ∈ DZ : red(xj · · ·xk) ̸= 0 for all j, k ∈ Z with j < k}.
Another way to define the (M,N) Dyck Motzkin shift ΣD is the following.

Consider a labeled directed graph that consists of infinitely many vertices Vi,j,
i = 0, 1, . . ., j = 1, . . . ,M i together with edges each labeled with a unique symbol
in D. Each vertex Vi,j has M outgoing edges

Vi,j
α1−→ Vi+1,Mj−M+1, . . . , Vi,j

αM−1−→ Vi+1,Mj−1, Vi,j
αM−→ Vi+1,Mj

and M incoming edges

Vi,j
β1←− Vi+1,Mj−M+1, . . . , Vi,j

βM−1←− Vi+1,Mj−1, Vi,j
βM←− Vi+1,Mj.

The bottom vertex V0,1 has additional M loop edges V0,1
β1,...,βM−→ V0,1. If N ̸= 0,

then each vertex Vi,j has additional N loop edges Vi,j
11,...,1N−→ Vi,j. Let Σ+

D denote
the set of one-sided infinite sequences of elements of D that are associated with
the infinite labeled paths in this graph starting at V0,1. Then ΣD is the invertible
extension of Σ+

D:

ΣD = {x = (xi)i∈Z ∈ DZ : xjxj+1 · · · ∈ Σ+
D for all j ∈ Z}.

Part of the labeled directed graph associated with the (2, 1) Dyck-Motzkin shift
is shown in Figure 1. The set of admissible words coincides with the set of strings
of labels associated with the finite paths in the graph starting at V0,1. Removing all
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the loop edges labeled with 11 gives part of the labeled directed graph associated
with the (2, 0) Dyck-Motzkin shift. It is easy to see that ΣD has infinitely many
forbidden words, and so it is not a Markov shift.

2.3. Classification of ergodic measures. For each j ∈ Z define Gj : ΣD →
{−1, 0, 1} by

Gj(x) =
M∑
k=1

(δαk,xj
− δβk,xj

).

We have Gj(x) = 1 if xj ∈ Dα, Gj(x) = 0 if xj ∈ D0, Gj(x) = −1 if xj ∈ Dβ. For
each i ∈ Z define Hi : ΣD → Z by

Hi(x) =


∑i−1

j=0Gj(x) for i ≥ 1,

−
∑−1

j=iGj(x) for i ≤ −1,
0 for i = 0.

The function Hi for i ≥ 1 (resp. i ≤ −1) counts the difference between the number
of symbols in Dα and that in Dβ appearing in x0 · · ·xi−1 (resp. xi · · ·x−1). For i,
j ∈ Z define

{Hi = Hj} = {x ∈ ΣD : Hi(x) = Hj(x)}.
For i, j ∈ Z with i < j, we have Hi(x) = Hj(x) if and only if the number of
symbols in Dα that appear in xi · · ·xj−1 equals the number of symbols in Dβ that
appear in xi · · ·xj−1. In particular, if red(xi · · ·xj−1) = 1 then Hi(x) = Hj(x)
holds. If x ∈ ΣD, i < j and Hi(x) = Hj(x) then i + 1 < j holds. If moreover
xi ∈ Dα (resp. xj−1 ∈ Dβ), then there exists k ∈ {i + 1, . . . , j − 1} (resp. k ∈
{i, . . . , j − 2}) such that the left bracket at position i (resp. the right bracket at
position j − 1) in x is closed with the corresponding right (resp. left) bracket at
position k in x: red(xi · · ·xk) = 1 and red(xi · · ·xℓ) ̸= 1 for all ℓ ∈ {i, . . . , k − 1}
(resp. red(xk · · ·xj−1) = 1 and red(xℓ · · ·xj−1) ̸= 1 for all ℓ ∈ {k + 1, . . . , j − 1}).

We introduce three pairwise disjoint shift-invariant Borel sets

A0 =
∞⋂

i=−∞

((
∞⋃
j=1

{Hi+j = Hi}

)
∩

(
∞⋃
j=1

{Hi−j = Hi}

))
,

Aα =

{
x ∈ ΣD : lim

i→∞
Hi(x) =∞ and lim

i→−∞
Hi(x) = −∞

}
,

Aβ =

{
x ∈ ΣD : lim

i→∞
Hi(x) = −∞ and lim

i→−∞
Hi(x) =∞

}
.

Note that all the three sets are dense in ΣD. The next lemma classifies elements
of the set M e(ΣD) of shift-invariant ergodic measures on ΣD.

Lemma 2.1. If µ ∈M e(ΣD), then either µ(A0) = 1, µ(Aα) = 1 or µ(Aβ) = 1.

Proof. For the Dyck shift, the statement had been proved in [21, pp.102–103].
We treat the Dyck-Motzkin shift with a simpler argument. With the notation in
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Section 2.1, for x ∈ ΣD let

l(x) = sup

{
i ∈ Z : x ∈

M⋃
k=1

(
ΣD(i;αk) ∩

∞⋃
j=1

{Hi+j = Hi}c
)}

,

and

r(x) = inf

{
i ∈ Z : x ∈

M⋃
k=1

(
ΣD(i; βk) ∩

∞⋃
j=1

{Hi−j+1 = Hi}c
)}

,

where the upper indices c denote the complement in ΣD. For i, j ∈ Z let

Ai,j = {x ∈ ΣD : l(x) = i, r(x) = j}.

If x ∈ ΣD \ (A0 ∪ Aα ∪ Aβ), then both l(x) and r(x) are finite. Hence we have

ΣD \ (A0 ∪ Aα ∪ Aβ) ⊂
⋃
i,j∈Z

Ai,j.

For all i, j ∈ Z we have σAi,j = Ai−1,j−1, and so Ai,j = A0,j−i ̸= ∅. If µ ∈ M(ΣD)
then we have µ(Ai,j) = 0. Since A0, Aα, Aβ are shift-invariant, if µ is ergodic then
either µ(A0) = 1, µ(Aα) = 1 or µ(Aβ) = 1. □

2.4. Construction of embeddings of the full shift. We introduce two full
shift spaces on M +N + 1 symbols over different sub-alphabets of D:

Σα = (Dα ∪D0 ∪ {β})Z and Σβ = ({α} ∪D0 ∪Dβ)
Z.

Let σα, σβ denote the left shifts acting on Σα, Σβ respectively. With the notation
in Section 2.1 we introduce two shift-invariant Borel sets of ΣD:

Bα =
∞⋂

i=−∞

M⋃
k=1

N⋃
ℓ=1

(
ΣD(i;αk) ∪ ΣD(i; 1ℓ) ∪

(
ΣD(i; βk) ∩

∞⋃
j=1

{Hi−j+1 = Hi+1}

))
,

Bβ =
∞⋂

i=−∞

M⋃
k=1

N⋃
ℓ=1

(
ΣD(i; βk) ∪ ΣD(i; 1k) ∪

(
ΣD(i;αk) ∩

∞⋃
j=1

{Hi+j = Hi}

))
.

The set Bα (resp. Bβ) is precisely the set of sequences in ΣD such that any right
(resp. left) bracket in the sequence is closed. One can check that

A0 ∪ Aα ⊂ Bα and A0 ∪ Aβ ⊂ Bβ.

Define ϕα : ΣD → Σα by

(ϕα(x))i =

{
β if xi ∈ Dβ,

xi otherwise.

In other words, ϕα(x) is obtained by replacing all βk, k ∈ {1, . . . ,M} in x by β.
Clearly ϕα is continuous, not one-to-one. Similarly, define ϕβ : ΣD → Σβ by

(ϕβ(x))i =

{
α if xi ∈ Dα,

xi otherwise.
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In other words, ϕβ(x) is obtained by replacing all αk, k ∈ {1, . . . ,M} in x by α.
Clearly ϕβ is continuous, not one-to-one. We set

Kα = ϕα(Bα) and Kβ = ϕβ(Bβ).

For each j ∈ Z define Gα,j : Σα → {−1, 0, 1} by

Gα,j(x) =
M∑
k=1

(δαk,xj
− δβ,xj

).

For each i ∈ Z define Hα,i : ΣD → Z by

Hα,i(x) =


∑i−1

j=0Gα,j(x) for i ≥ 1,

−
∑−1

j=iGα,j(x) for i ≤ −1,
0 for i = 0.

The function Hα,i for i ≥ 1 (resp. i ≤ −1) counts the difference between the
number of symbols in Dα and that of β appearing in x0 · · ·xi−1 (resp. xi · · ·x−1).
We define ψα : Kα → DZ by

(ψα(y))i =

{
βk if yi = β, ysα(i,y) = αk, k ∈ {1, . . . ,M},
yi otherwise,

where

sα(i, y) = max{j < i+ 1: Hα,j(y) = Hα,i+1(y)}.
Clearly ψα is continuous.

Similarly, for each j ∈ Z define Gβ,j : Σβ → {−1, 0, 1} by

Gβ,j(x) =
M∑
k=1

(δα,xj
− δβk,xj

).

For each i ∈ Z define Hβ,i : ΣD → Z by

Hβ,i(x) =


∑i−1

j=0Gβ,j(x) for i ≥ 1,

−
∑−1

j=iGβ,j(x) for i ≤ −1,
0 for i = 0.

We define ψβ : Kβ → DZ by

(ψβ(y))i =

{
αk if yi = α, ysβ(i,y) = βk, k ∈ {1, . . . ,M},
yi otherwise,

where

sβ(i, y) = min{j > i : Hβ,j(y) = Hβ,i(y)}.
Clearly ψβ is continuous too.

Lemma 2.2. For each γ ∈ {α, β} the following statements hold:

(a) ψγ(Kγ) = Bγ, and ψγ is a homeomorphism whose inverse is ϕγ|Bγ .
(b) ϕγ ◦ σ|Bγ = σγ ◦ ϕγ|Bγ and σ−1 ◦ ψγ = ψγ ◦ σ−1

γ |Kγ .
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Proof. For each γ ∈ {α, β}, it is straightforward to check that ψγ ◦ ϕγ(x) = x for
all x ∈ Bγ, and ϕγ ◦ ψγ(y) = y for all y ∈ Kγ, which verifies (a). A proof of (b) is
also straightforward. □

2.5. Transport of ergodic measures. By Lemma 2.2, if γ ∈ {α, β} and ν ∈
M(Σγ) satisfies ν(Kγ) = 1, then ν can be transported to a shift-invariant measure
on ΣD. The lemma below gives a sufficient condition for measures in M e(Σγ) to
have measure 1 on Kγ. For each γ ∈ {α, β} we set

Σγ(γ) = {ω ∈ Σγ : ω0 ∈ Dγ} and Σγ(0) = {ω ∈ Σγ : ω0 ∈ D0},
and define Eγ : Σγ → R by

Eγ = 2 · 1Σγ(γ) + 1Σγ(0),

where 1(·) denotes the indicator function. Note that Eγ is continuous. If N = 0
then Eγ = 2 · 1Σγ(γ). If ν ∈ M(Σα) and

∫
Eαdν > 1 (resp. ν ∈ M(Σβ) and∫

Eβdν > 1), then ν gives more mass to the union of cylinders corresponding to
the symbols in Dα (resp. Dβ) than the cylinder corresponding to β (resp. α).

Lemma 2.3. For each γ ∈ {α, β} the following statements hold:

(a) If ν ∈M e(Σγ) and
∫
Eγdν > 1 then ν(Kγ) = 1.

(b) Kγ is a dense subset of Σγ.

Proof. The statements for the Dyck shift were essentially proved in [21, Section 4].
We extend the proofs there to the Dyck-Motzkin shift. By the definitions of Bα

and ϕα we have

Kα =

∞⋂
i=−∞

M⋃
k=1

N⋃
ℓ=1

(
Σα(i;αk) ∪ Σα(i; 1ℓ) ∪

(
Σα(i; β) ∩

∞⋃
j=1

{Hα,i−j+1 = Hα,i+1}

))
,

and by De Morgan’s laws,

Kc
α =

∞⋃
i=−∞

M⋂
k=1

N⋂
ℓ=1

(
Σα(i;αk)

c ∩ Σα(i; 1ℓ)
c ∩

(
Σα(i; β)

c ∪
∞⋂
j=1

{Hα,i−j+1 = Hα,i+1}c
))

,

where the upper indices c denote the complements in Σα. For each y ∈ Kc
α there

exists i ∈ Z such that yi = β and Hα,i−j+1(y) ̸= Hα,i+1(y) for all j ∈ N. By
induction, for all j ≥ 1 we have

#{m ∈ {i− j + 1, . . . , i} : ym = β} > #{m ∈ {i− j + 1, . . . , i} : ym ∈ Dα}.
If ν ∈ M e(Σα) and

∫
Eαdν > 1, then ν(Σα(0; β)) < ν(Σα(α)), and Birkhoff’s

ergodic theorem applied to (σ−1
α , ν) yields ν(Kα) = 1 as required in (a) for γ = α.

One can treat the case γ = β analogously, using σβ instead of σ−1
α .

In order to prove (b), let νγ denote the Bernoulli measure on Σγ with the uniform
distribution over M +N +1 symbols, which are of entropy log(M +N +1). Since∫
Eγdνγ > 1 by hypothesis, we have νγ(Kγ) = 1 by (a). Since νγ is fully supported

on Σγ, Kγ is a dense subset of Σγ. The proof of Lemma 2.3 is complete. □
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2.6. Borel embeddings. Let Σ1, Σ2 be two subshifts. For i = 1, 2, let σi denote
the left shift acting on Σi. Let K be a shift-invariant, proper Borel subset of Σ1.
We say ψ : K → Σ2 is a Borel embedding of Σ1 into Σ2 if the following hold:

(i) ψ is continuous, injective and ψ−1 : ψ(K)→ K is continuous,
(ii) σ2 ◦ ψ = ψ ◦ σ1,
(iii) there is no continuous map ψ̄ : Σ1 → Σ2 such that ψ̄ = ψ on K.

By [16, Theorem 5.3] and [17, Theorem 5.8], there is no proper embedding of
the full shift on M + N + 1 symbols to ΣD. From this and Lemma 2.2 it follows
that Kγ is a proper subset of Σγ. Moreover the following holds.

Proposition 2.4. For each γ ∈ {α, β} the map ψγ : Kγ → Bγ ⊂ ΣD is a Borel
embedding of Σγ into ΣD.

Proof. Conditions (i), (ii) in the definition of Borel embedding is a consequence of
Lemma 2.2. It is left to show (iii). If there were a continuous map ψ̄γ : Σγ → ΣD

such that ψ̄γ(y) = ψγ(y) for all y ∈ Kγ, then ψ̄γ ◦ ϕγ : ΣD → ΣD would be
continuous. Since ψγ ◦ ϕγ(x) = x holds for all x ∈ Bγ, ψ̄γ ◦ ϕγ(x) = x would hold
for all x ∈ Bγ. Since Bγ is dense in ΣD Lemma 2.3(b), ψ̄γ ◦ ϕγ(x) = x would hold
for all x ∈ ΣD. Then ϕγ would be injective, a contradiction. □

2.7. Approximation of ergodic measures by CO-measures. Let Σ be a sub-
shift. A point x ∈ Σ is called a periodic point of period n ∈ N if σnx = x. An
element of M(Σ) that is supported on the orbit of a single periodic point is called
a CO-measure. Clearly CO-measures are ergodic. Let MCO(Σ) denote the set of
CO-measures.
Recall that there exist three pairwise disjoint shift-invariant Borel subsets A0,

Aα, Aβ ⊂ ΣD such that any shift-invariant ergodic measure has measure 1 to one
of these three sets (Section 2.3 and Lemma 2.1). Let

M e
γ(ΣD) = {µ ∈M e(ΣD) : µ(Aγ) = 1} for γ ∈ {0, α, β}.

Proposition 2.5. For all γ ∈ {α, β} we have

M e
γ(ΣD) ⊂M e

γ(ΣD) ∩MCO(ΣD)

and
M e

0(ΣD) ⊂M e
γ(ΣD) ∩MCO(ΣD).

In particular, MCO(ΣD) is dense in M e(ΣD).

Proof. For ω = ω1 · · ·ωk ∈ D∗ and n ∈ N, let ωn ∈ D∗ denote the n-fold concate-
nation: (ωn)i = ωj, j = i mod k for i = 1, . . . , kn. Let ω ∈ D∗. If red(ω) = 1 then
we say ω is neutral. If red(ω) is a concatenation of symbols in Dα (resp. Dβ), then
we say ω is negative (resp. positive). If ω is neutral, negative or positive then ωn

is admissible for all n ∈ N.
In order to prove the first inclusion, let µ ∈ M e

γ(ΣD). By Birkhoff’s ergodic

theorem, there exists x ∈ Aγ such that n−1
∑n−1

i=0 δσix → µ and n−1
∑−n+1

i=0 δσix →
µ, where δσix denotes the unit point mass at σix. If γ = α, then by the definition of
Aα, for any n ∈ N there exists l ∈ Z such that l ≤ −n and ω = xl · · · xn is negative.
Then ΣD(l;xl · · ·xn) contains exactly one periodic point of period n − l + 1. Let
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µn denote the CO-measure supported on the orbit of this periodic point. Since
{x} =

⋂∞
n=1ΣD(l;xl · · · xn) we have µn ∈ M e

α(ΣD) and µn → µ. A proof for the
case γ = β is analogous.

In order to prove the second inclusion, let µ ∈ M e
0(ΣD). By Birkhoff’s ergodic

theorem, there exists x ∈ A0 such that n−1
∑n−1

i=0 δσix → µ and n−1
∑−n+1

i=0 δσix →
µ. By the definition of A0, for any n ∈ N there exist l, m ∈ Z such that l ≤ −n,
m ≥ n and ω = xl · · ·xm is neutral. For all k ∈ N, ω2kα1 is admissible, negative and
ΣD(−k|ω|+ l;ω2kα1) contains exactly one periodic point of period 2k|ω|+ 1. Let
µn denote the CO-measure supported on the orbit of this periodic point. Clearly
we have µn ∈ M e

α(ΣD). Since {x} =
⋂∞

n=1 ΣD(−k|ω| + l;ω2k), we obtain µn → µ.
This verifies the second inclusion for γ = α. A proof for γ = β is analogous, with
all α1 replaced by β1. □

3. On the abundance of high complexity paths

The aim of this section is to prove the abundance of high complexity paths
of ergodic measures for the Dyck-Motzkin shift informally stated in (1) (2) in
Section 1. In Section 3.1 we give relevant definitions, and give a precise statement
of this in Proposition 3.1. After proving two preliminary lemmas in Section 3.2, we
complete the proof of Proposition 3.1 in Section 3.3. In Section 3.4 we comment
more on the path connectedness of spaces of ergodic measures.

3.1. A precise statement. A path t ∈ [0, 1] 7→ µt ∈ M e(ΣD) is called a high
complexity path if the following two conditions hold:

(A1) µt is fully supported on ΣD and is Bernoulli for all t ∈ [0, 1] but countably
many values;

(A2) For any µ ∈ {µt : t ∈ [0, 1]}, the set {t ∈ [0, 1] : µt = µ} is countable.
The next proposition is a key ingredient in the proof of Theorem A(b) and that of
Theorem B.

Proposition 3.1 (The abundance of high complexity paths). Let U be a convex
open subset of M(ΣD), let γ ∈ {α, β} and let µ+, µ− ∈ U ∩(M e

0(ΣD)∪M e
γ(ΣD)) be

distinct measures. There exists a high complexity path that lies in U ∩ (M e
0(ΣD) ∪

M e
γ(ΣD)) and joins µ+, µ−.

From Proposition 3.1 we immediately obtain the following statement.

Proposition 3.2. The spaces M e
0(ΣD)∪M e

α(ΣD) and M
e
0(ΣD)∪M e

β(ΣD) are path
connected and locally path connected.

Proof. The path connectedness is a consequence of Proposition 3.1 with U =
M(ΣD). Since any point in M(ΣD) has a neighborhood base consisting of convex
open sets, the local path connectedness is also a consequence of Proposition 3.1. □

A proof of Proposition 3.1 has been inspired by the works of Sigmund [34, 35]
on the path connectedness of the space of ergodic measures for Axiom A diffeo-
morphisms (essentially topologically mixing Markov shifts). In [34] he proved that
the set of CO-measures are dense in the space of shift-invariant Borel probability
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measures. Later in the proof of [35, Theorem B] he showed that any pair of CO-
measures can be joined by a path of ergodic measures, in such a way that if the
two CO-measures lie in a convex open set, then the whole path can be chosen to
lie in this set. These paths can be concatenated to form a path joining a given
pair of ergodic measures.

The rest of this section except Section 3.4 is dedicated to a proof of Proposi-
tion 3.1 that breaks into three steps. We only give a proof for γ = α since that
for γ = β is identical. Using Proposition 2.5, we take sequences {µ+

n }n∈N, {µ−
n }n∈N

of CO-measures in U that approximate µ+, µ− respectively. Then we transport
{µ+

n }n∈N, {µ−
n }n∈N via ϕα|Bα : Bα → Kα ⊂ Σα, and apply Sigmund’s result in the

proof of [35, Theorem B] (see Lemma 3.5) to obtain sequences of paths that ap-
propriately join the transported measures. Finally we transport these paths back
to ΣD via ψα : Kα → Bα ⊂ ΣD, and concatenate all of them to form a path joining
µ+, µ− with the required property. The transport in the last step needs to be
justified since ψα is a Borel embedding of Σα into ΣD as in Proposition 2.4, which
does not have a continuous extension to the whole shift space Σα.

Remark 3.3. Gorodetski and Pesin [15] further developed Sigmund’s argument
explained as above to prove the path connectedness of some basic pieces of the
space of ergodic measures for some partially hyperbolic diffeomorphisms. In [15],
they did not treat the path connectedness of the whose space of ergodic measures.

3.2. Preliminary lemmas. Recall that σαKα = Kα but Kα is not a subshift as it
is not closed. With a slight abuse of notation, letM(Kα) denote the space of σα|Kα-
invariant Borel probability measures on Kα endowed with the weak* topology.
Note that

M(Kα) = {ν ∈M(Σα) : ν(Kα) = 1}.
By Lemma 2.2(a), ϕα|Bα : Bα → Kα is a homeomorphism whose inverse is the
Borel embedding ψα : Kα → Bα. Define a push-forward ψ∗

α : M(Kα)→M(ΣD) by

ψ∗
α(ν) = ν ◦ ψ−1

α .

Since ψα is continuous, ψ∗
α is continuous.

Lemma 3.4. If ν ∈M(Kα) is fully supported on Σα, then ψ
∗
α(ν) is fully supported

on ΣD.

Proof. Since ψα is a homeomorphism by Lemma 2.2(a) and Kα is dense in Σα by
Lemma 2.3(b), if ν ∈M(Kα) is fully supported on Σα then ν ◦ψ−1

α (Bα) = ν(Kα) =
1. Since Bα is dense in ΣD, ψ

∗
α(ν) is fully supported on ΣD. □

The next lemma is essentially due to Sigmund, shown in the proof of [35, The-
orem B]. Here we only add a supplementary proof.

Lemma 3.5. Let Σ be a topologically mixing Markov shift. Let µ, µ′ ∈ M e(Σ) be
distinct CO-measures, and let U be a convex open subset of M e(Σ) that contains
µ, µ′. There is a homeomorphism t ∈ [0, 1] 7→ θt ∈ U onto its image that is a high
complexity path joining µ, µ′.
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Proof. It was shown in the proof of [35, Theorem B] that there exist a topologically
mixing Markov shift Σ′, a homeomorphism τ : Σ→ Σ′ commuting with the shifts,
and a path t ∈ [0, 1] 7→ θt ∈ U joining µ, µ′ such that θt ◦ τ−1 is a Markov measure
for all t ∈ (0, 1). In particular, θt ◦ τ−1 is a Gibbs state [5] for all t ∈ (0, 1), and it
is Bernoulli by [5, Theorem 1.25] and [13]. Hence, θt is fully supported on Σ and
is Bernoulli for all t ∈ (0, 1). A close inspection into the proof of [35, Theorem B]
shows the injectivity of t ∈ [0, 1] 7→ θt ∈ U . □

3.3. Proof of Proposition 3.1. We fix a countable dense subset {fn ̸≡ 0: n ∈ N}
of C(Σα), and define a metric d on M(Σα) by

d(ν, ν ′) =
∞∑
n=1

|
∫
fndν −

∫
fndν

′|
2n∥fn∥C0

for ν, ν ′ ∈M(Σα).

The weak* topology on M(Σα) is metrizable by the metric d. For ν ∈M(Σα) and
δ > 0, let Uα(ν, δ) denote the open ball of radius δ about ν with respect to d.

Let U be a convex open subset of M(ΣD) and let µ+, µ− ∈ U ∩ (M e
0(ΣD) ∪

M e
α(ΣD)) be distinct measures. The definition of Eα gives

(3.1)

∫
Eα ◦ ϕαdµ

+ ≥ 1 and

∫
Eα ◦ ϕαdµ

− ≥ 1.

Since U is open and ψ∗
α is continuous, there exists q ∈ N such that

(3.2) ψ∗
α

((
Uα

(
µ+ ◦ ϕ−1

α , q−1
)
∪ Uα

(
µ− ◦ ϕ−1

α , q−1
))
∩M(Kα)

)
⊂ U.

By (3.1) and Proposition 2.5(a)(b), there exist sequences {µ+
n }n∈N, {µ−

n }n∈N of CO-
measures in U ∩M e

α(ΣD) converging to µ+, µ− respectively such that µ+
1 ̸= µ−

1 ,
µ+
n ̸= µ+

n+1 and µ−
n ̸= µ−

n+1 for all n ∈ N, and the following two conditions hold:

(B1) For all n ∈ N,
∫
Eα ◦ ϕαdµ

+
n > 1 and

∫
Eα ◦ ϕαdµ

−
n > 1.

(B2) For all n ∈ N,
max{d(µ+ ◦ ϕ−1

α , µ+
n ◦ ϕ−1

α ), d(µ− ◦ ϕ−1
α , µ−

n ◦ ϕ−1
α )} < (n+ q)−1.

Since Eα is continuous, the set

Vα =

{
ν ∈M(Σα) :

∫
Eαdν > 1

}
is a convex open subset of M(Σα). For each n ∈ N we set

V +
n = Uα

(
µ+ ◦ ϕ−1

α , (n+ q)−1
)
∩ Vα and W+

n = ψ∗
α(V

+
n ∩M(Kα)),

V −
n = Uα

(
µ− ◦ ϕ−1

α , (n+ q)−1
)
∩ Vα and W−

n = ψ∗
α(V

−
n ∩M(Kα)).

Note that V +
n , V −

n are convex open subsets of M(Σα), and they decrease as n
increases. By (B1) and (B2), µ+

n ◦ ϕ−1
α belongs to V +

n ∩ M(Kα) and µ−
n ◦ ϕ−1

α

belongs to V −
n ∩M(Kα). By (3.2) we have

(3.3) W+
n ∪W−

n ⊂ U for all n ∈ N.
If
∫
Eα ◦ ϕαdµ

+ > 1 (resp.
∫
Eα ◦ ϕαdµ

+ = 1), then µ+ ∈ W+
n (resp. µ+ /∈ W+

n )
holds for all n ∈ N. Analogous statements hold for µ−. The next lemma asserts
that W+

n (resp. W−
n ) approaches to µ+ (resp. µ−) as n→∞. See Figure 2 for a

schematic picture.
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Figure 2. Each straight segment indicates the path that lies in
U ∩M e

α(ΣD) and joins the two CO-measures at its endpoints, which
is obtained by applying Lemma 3.5 once. Their concatenation lies
in U ∩M e

α(ΣD) and joins µ+, µ−.

Lemma 3.6. For any open subset Y of M(ΣD) that contains µ
+ (resp. µ−), there

exists n ∈ N such that M e(ΣD) ∩W+
n ⊂ Y (resp. M e(ΣD) ∩W−

n ⊂ Y ).

Proof. Let {ρn}n∈N be a sequence in M e(ΣD) such that ρn ∈M e(ΣD)∩W+
n for all

n ∈ N. Let {ρn(j)}j∈N be an arbitrary convergent subsequence and let ρ denote its
limit measure. By the definitions of V +

n(j) andW
+
n(j) we have d(µ

+◦ϕ−1
α , ρn(j)◦ϕ−1

α ) <

(n(j) + q)−1, and so ρn(j) ◦ ϕ−1
α → µ+ ◦ ϕ−1

α . Meanwhile we have ψ∗
α(ρn(j) ◦ ϕ−1

α ) =
ρn(j) → ρ and ψ∗

α(µ
+
n(j) ◦ ϕ−1

α ) = µ+
n(j) → µ+, and µ+

n(j) ◦ ϕ−1
α → µ+ ◦ ϕ−1

α by (B2).

The continuity of ψ∗
α at µ+ ◦ ϕ−1

α yields ρ = µ+. Since {ρn(j)}j∈N is an arbitrary
convergent subsequence, the assertion of the lemma for µ+ follows. A proof of the
assertion of the lemma for µ− is analogous. □

By Lemma 3.5, for each n ∈ N there is a homeomorphism t ∈ [0, 1] 7→ θ+n,t ∈
V +
n ∩M e(Σα) onto its image such that θ+n,0 = µ+

n ◦ ϕ−1
α , θ+n,1 = µ+

n+1 ◦ ϕ−1
α , and θ+n,t

is fully supported on Σα and is Bernoulli for all t ∈ (0, 1). Since V +
n ⊂ Vα, we have∫

Eαdθ
+
n,t > 1 for all t ∈ [0, 1]. Lemma 2.3(a) gives θ+n,t ∈ M(Kα) for all t ∈ [0, 1].

Hence, the measure µ+
n,t = θ+n,t ◦ ψ−1

α is well-defined and belongs to M e
α(ΣD) for all

t ∈ [0, 1], and t ∈ [0, 1] 7→ µ+
n,t ∈M e

α(ΣD) is a homeomorphism onto its image. This

path lies in W+
n and joins µ+

n , µ
+
n+1 by µ

+
n,0 = µ+

n and µ+
n,1 = µ+

n+1. By Lemma 3.4,

µ+
n,t is fully supported on ΣD and is Bernoulli for all t ∈ (0, 1). In other words,

t ∈ [0, 1] 7→ µ+
n,t is a high complexity path. We repeat the same argument to obtain

for each n ∈ N a high complexity path t ∈ [0, 1] 7→ µ−
n,t ∈M e

α(ΣD) that lies in W
−
n

and joins µ−
n , µ

−
n+1 by µ−

n,0 = µ−
n and µ−

n,1 = µ−
n+1.
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Lemma 3.7. There is a high complexity path that lies in U ∩M e
α(ΣD) and joins

µ+
1 , µ

−
1 .

Proof. Consider the set L = {tµ+
1 ◦ ϕ−1

α + (1− t)µ−
1 ◦ ϕ−1

α : t ∈ [0, 1]}. By (B1) and
Lemma 2.3(a) we have µ+

1 ◦ ϕ−1
α , µ−

1 ◦ ϕ−1
α ∈ M(Kα). Hence L ⊂ M(Kα) holds.

Since ψ∗
α(µ

+
1 ◦ ϕ−1

α ) = µ+
1 ∈ U , ψ∗

α(µ
−
1 ◦ ϕ−1

α ) = µ−
1 ∈ U and U is convex, we have

ψ∗
α(L) = {tµ+

1 +(1− t)µ−
1 : t ∈ [0, 1]} ⊂ U. Since ψ∗

α is continuous, L ⊂ Vα and L is
a compact subset of M(Σα), there exist an integer k ≥ 3 and convex open subsets
Q1, . . . , Qk of M(Σα) such that:

(i) (Qi ∩Qi+1) ∩ L ̸= ∅ for i = 1, . . . , k − 1;

(ii) L ⊂
⋃k

i=1Qi ⊂ Vα and
⋃k

i=1 ψ
∗
α(Qi ∩M(Kα)) ⊂ U ;

(iii) µ+
1 ◦ ϕ−1

α ∈ Q1 and µ−
1 ◦ ϕ−1

α ∈ Qk.

Since MCO(Σα) is dense in M(Σα) by [34, Theorem 1], (i) implies (Qi ∩ Qi+1) ∩
MCO(Σα) ̸= ∅ for i = 1, . . . , k − 1. For each i ∈ {1, . . . , k − 1} we fix νi ∈
(Qi ∩Qi+1)∩MCO(Σα) such that µ+

1 ◦ ϕ−1
α ̸= ν1, νi ̸= νi+1 for i = 1, . . . , k− 2 and

νk ̸= µ−
1 ◦ ϕ−1

α . By Lemma 3.5, the following statements hold:

• There is a high complexity path that lies in Q1∩M e(Σα) and joins µ+
1 ◦ϕ−1

α ,
ν1.
• For each i ∈ {1, . . . , k − 2}, there is a high complexity path that lies in
Qi+1 ∩M e(Σα) and joins νi, νi+1.
• There is a high complexity path that lies in Qk ∩ M e(Σα) and joins νk,
µ−
1 ◦ ϕ−1

α .

Concatenating all these paths yields a path that lies in (
⋃k

i=1Qi) ∩M e(Σα) and
joins µ+

1 ◦ϕ−1
α , µ−

1 ◦ϕ−1
α . From (ii) and Lemma 2.3(a), this path can be transported

to a high complexity path that lies in U ∩M e
α(ΣD) and joins µ+

1 , µ
−
1 . □

By Lemma 3.7, there is a high complexity path t ∈ [0, 1] 7→ µ0
t ∈ U ∩M e

α(ΣD)
that joins µ+

1 , µ
−
1 by µ0

0 = µ+
1 and µ0

1 = µ−
1 . We define a map t ∈ [0, 1] 7→ µt ∈ U

by

µt =



µ+ for t = 0,

µ+
n,2n+2(t−2−n−2) for t ∈ [2−n−2, 2−n−1], n ∈ N,
µ0
2(t−1/4) for t ∈ [1/4, 3/4],

µ−
n,2−n+2(t−1+2n−1) for t ∈ [1− 2n−1, 1− 2n−2], n ∈ N,
µ− for t = 1.

The construction gives {µt : t ∈ [2−n−2, 2−n−1]} = {µ+
n,t : t ∈ [0, 1]} ⊂ W+

n and

{µt : t ∈ [1 − 2n−1, 1 − 2n−2]} = {µ−
n,t : t ∈ [0, 1]} ⊂ W−

n for all n ∈ N. So,
Lemma 3.6 implies the continuity of t 7→ µt at t = 0 and t = 1. Hence this
path lies in U ∩ (M e

0(ΣD) ∪ M e
α(ΣD)) and joins µ+, µ−. See Figure 2 for a

schematic picture. Since it is piecewise homeomorphic, the set {t ∈ [0, 1] : µt = µ}
is countable for all µ ∈ {µt : t ∈ [0, 1]}. Therefore, this path is a high complexity
path. This completes the proof of Proposition 3.1. □

3.4. More on path connectedness. In addition to Proposition 3.2, the following
statement is of independent interest.
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Proposition 3.8. The spaces M e
α(ΣD) and M

e
β(ΣD) are path connected and locally

path connected.

Proof. Let γ ∈ {α, β}. Slightly modifying the proof of Proposition 3.1, one can
show that for any convex open subset U of M(ΣD) and for any pair of distinct
measures in µ+, µ− ∈ U ∩M e

γ(ΣD), there exists a high complexity path that lies in
U ∩M e

γ(ΣD) and joins them. The path connectedness of M e
γ(ΣD) is a consequence

of this with U = M(ΣD). Since any point in M(ΣD) has a neighborhood base
consisting of convex open sets, the local path connectedness of M e

γ(ΣD) is also a
consequence. □

4. Proofs of the main results

We are almost ready to complete the proofs of the main results of this paper.
In Section 4.1 we collect a few ingredients on functional analysis. In Section 4.2
we complete the proof of Theorem A. In Section 4.3 we complete the proof of
Theorem B.

4.1. Functional analysis. The proof of Theorem A(b) requires the same set of
functional analytic ingredients in [33, Section 3.1]. Here we copy them for the
reader’s convenience.

For a Banach space V with a norm ∥ · ∥, let V ∗ denote the set of real-valued
bounded linear functionals on V . For each µ ∈ V ∗ let ∥µ∥ denote the norm

∥µ∥ = sup {|µ(f)| : f ∈ V, ∥f∥ = 1} .

Let Λ, µ ∈ V ∗. We say:

• µ is tangent to Λ at f ∈ V if µ(f) ≤ Λ(f + g)− Λ(f) holds for all g ∈ V .
• µ is bounded by Λ if µ(f) ≤ Λ(f) holds for all f ∈ V .
• Λ is convex if Λ(tf + (1− t)g) ≤ tΛ(f) + (1− t)Λ(g) holds for all f , g ∈ V
and t ∈ [0, 1].

Theorem 4.1 ([19], Theorem V.1.1). Let V be a Banach space and let Λ ∈ V ∗ be
convex and continuous. For any µ ∈ V ∗ that is bounded by Λ, any f ∈ V and any
ε > 0, there exist µ̃ ∈ V ∗ and f̃ ∈ V such that µ̃ is tangent to Λ at f̃ and

∥µ̃− µ∥ ≤ ε and ∥f̃ − f∥ ≤ 1

ε
(Λ(f)− µ(f) + s),

where s = sup{µ(g)− Λ(g) : g ∈ V } ≤ 0.

For a continuous map T of a compact metric space X, the functional ΛT on
C(X) given by (1.1) is convex and continuous. The next lemma characterizes
maximizing measures in terms of ΛT . Recall that C(X)∗ can be identified with
the set of (finite) signed Borel measures on X by Riesz’s representation theorem.

Lemma 4.2 ([6], Lemma 2.3). Let T be a continuous map of a compact metric
space X and let f ∈ C(X). Then µ ∈ C(X)∗ is tangent to ΛT at f if and only if
µ belongs to M(X,T ) and is f -maximizing.
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If T is a continuous map of X, then for any µ ∈M(X,T ) there exists a unique
Borel probability measure bµ on M(X,T ) such that bµ(M

e(X,T )) = 1 and µ =∫
Me(X,T )

νdbµ(ν). We call bµ the barycenter of µ. Put

supp(bµ) =
⋂
{F : F ⊂M(X,T ), closed, bµ(F ) = 1}.

Since M(X,T ) has a countable base, we have bµ(supp(bµ)) = 1.

Lemma 4.3 ([33], Lemma 3.3). Let T be a continuous map of a compact metric
space X.

(a) If there exists a constant C ≥ 0 such that h(ν) ≤ C for all ν ∈ supp(bµ),
then h(µ) ≤ C.

(b) Let f ∈ C(X), µ ∈Mmax(f). Then supp(bµ) is contained in Mmax(f).

The next lemma asserts that the barycenter map µ 7→ bµ from M(X,T ) to the
set of Borel probability measures on M(X,T ) is isometric.

Lemma 4.4 ([19], Corollary IV.4.2). Let T be a continuous map of a compact
metric space X. For all µ, µ′ ∈M(X,T ) we have

∥bµ − bµ′∥ = ∥µ− µ′∥.

4.2. Proof of Theorem A. For each n ∈ N, define

On =

{
µ ∈M e(ΣD) : 0 ≤ h(µ) <

1

n

}
,

and

Un = {f ∈ C(ΣD) : M e(ΣD) ∩Mmax(f) ⊂ On}.
Clearly, the set R = {f ∈ C(ΣD) : h(µ) = 0 for all µ ∈ Mmax(f)} is contained in⋂∞

n=1 Un. Conversely, let f ∈
⋂∞

n=1 Un. Any ergodic measure in Mmax(f) has zero
entropy, and by Lemma 4.3, any non-ergodic measure inMmax(f) has zero entropy
too. Hence we obtain R =

⋂∞
n=1 Un.

By the upper semicontinuity of the entropy function, On is an open subset of
M e(ΣD). CO-measures have zero entropy, and they are dense in M e(ΣD) by

Proposition 2.5(a). It follows that On is a dense subset of M e(ΣD). By the result
of Morris [29, Theorem 1.1], Un is an open and dense subset of C(ΣD). Therefore,
R is dense Gδ as required in Theorem A(a).
To prove Theorem A(b), let f ∈ C(ΣD). By Proposition 3.1, there is a high

complexity path t ∈ [0, 1] 7→ µt ∈ M e(ΣD) such that µ0 ∈ Mmax(f). Let ε ∈
(0, 1/2) and put

R =

{
ν ∈M(ΣD) :

∫
fdν ≥ Λσ(f)− ε2

}
.

Let m denote the Lebesgue measure on [0, 1], and define a Borel probability mea-
sure m̂ on M e(ΣD) by m̂(·) = m{t ∈ [0, 1] : µt ∈ ·}. Since f ∈ C(ΣD), we have
m̂(R∩M e(ΣD)) > 0. Let m̂R denote the normalized restriction of m̂ to R∩M e(ΣD),
and put µ =

∫
Me(ΣD)

νdm̂R(ν). Then µ belongs to R and is bounded by Λσ as an
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element of C(ΣD)
∗. Note that bµ = m̂R. By Theorem 4.1, there exist f̃ ∈ C(ΣD)

and µ̃ ∈ C(ΣD)
∗ such that µ̃ is tangent to Λσ at f̃ , and

(4.1) ∥µ̃− µ∥ ≤ ε and ∥f̃ − f∥C0 ≤ 1

ε

(
Λσ(f)−

∫
fdµ

)
≤ ε.

By Lemma 4.2, µ̃ is shift-invariant and f̃ -maximizing.
Take an open subset U ofM(ΣD) such that supp(bµ̃) ⊂ U and bµ(U \supp(bµ̃)) <

ε. Since M e(ΣD) is a metric space, it is a normal space. By Urysohn’s lemma,
there exists g ∈ C(M(ΣD)) such that ∥g∥C0 = 1, g ≡ 0 on M(ΣD) \ U and g ≡ 1
on supp(bµ̃). We have

bµ(supp(bµ̃)) > bµ(U)− ε > bµ(g)− ε ≥ bµ̃(g)− 2ε

≥ bµ̃(supp(bµ̃))− 2ε = 1− 2ε > 0.

To deduce the third inequality, we have used ∥bµ̃ − bµ∥ = ∥µ̃ − µ∥ ≤ ε from
Lemma 4.4 and the first inequality in (4.1). Since bµ is non-atomic from the
property (A2), it follows that the set {µt : t ∈ [0, 1], µt ∈ supp(bµ̃)} contains

uncountably many elements, which belong to Mmax(f̃) by Lemma 4.3. Since f ∈
C(ΣD) and ε ∈ (0, 1/2) are arbitrary, the proof of Theorem A(b) is complete. □

4.3. Proof of Theorem B. Since M e(ΣD) =M e
α(ΣD) ∪M e

β(ΣD) ∪M e
0(ΣD), the

path connectedness of M e(ΣD) follows from Proposition 3.2. Let U be a convex
open subset ofM(ΣD). SinceM

e(ΣD) is dense inM(ΣD), we have U∩M e(ΣD) ̸= ∅.
By Proposition 3.1, for each γ ∈ {α, β} the set U ∩ (M e

0(ΣD) ∪M e
γ(ΣD)) is path

connected unless empty. It follows that U ∩M e(ΣD) is path connected. Since any
point in M(ΣD) has a neighborhood base consisting of convex open sets and U
is an arbitrary convex open subset of M(ΣD), we have verified that M e(ΣD) is
locally path connected. The proof of Theorem B is complete. □
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